Low-Cost Probabilistic 3D Denoising with Applications for Ultra-Low-Radiation Computed Tomography
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27120%2F22%3A10250373" target="_blank" >RIV/61989100:27120/22:10250373 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2313-433X/8/6/156" target="_blank" >https://www.mdpi.com/2313-433X/8/6/156</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/jimaging8060156" target="_blank" >10.3390/jimaging8060156</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Low-Cost Probabilistic 3D Denoising with Applications for Ultra-Low-Radiation Computed Tomography
Popis výsledku v původním jazyce
We propose a pipeline for synthetic generation of personalized Computer Tomography (CT) images, with a radiation exposure evaluation and a lifetime attributable risk (LAR) assessment. We perform a patient-specific performance evaluation for a broad range of denoising algorithms (including the most popular deep learning denoising approaches, wavelets-based methods, methods based on Mumford-Shah denoising, etc.), focusing both on accessing the capability to reduce the patient-specific CT-induced LAR and on computational cost scalability. We introduce a parallel Probabilistic Mumford-Shah denoising model (PMS) and show that it markedly-outperforms the compared common denoising methods in denoising quality and cost scaling. In particular, we show that it allows an approximately 22-fold robust patient-specific LAR reduction for infants and a 10-fold LAR reduction for adults. Using a normal laptop, the proposed algorithm for PMS allows cheap and robust (with a multiscale structural similarity index >90%) denoising of very large 2D videos and 3D images (with over 107 voxels) that are subject to ultra-strong noise (Gaussian and non-Gaussian) for signal-to-noise ratios far below 1.0. The code is provided for open access.
Název v anglickém jazyce
Low-Cost Probabilistic 3D Denoising with Applications for Ultra-Low-Radiation Computed Tomography
Popis výsledku anglicky
We propose a pipeline for synthetic generation of personalized Computer Tomography (CT) images, with a radiation exposure evaluation and a lifetime attributable risk (LAR) assessment. We perform a patient-specific performance evaluation for a broad range of denoising algorithms (including the most popular deep learning denoising approaches, wavelets-based methods, methods based on Mumford-Shah denoising, etc.), focusing both on accessing the capability to reduce the patient-specific CT-induced LAR and on computational cost scalability. We introduce a parallel Probabilistic Mumford-Shah denoising model (PMS) and show that it markedly-outperforms the compared common denoising methods in denoising quality and cost scaling. In particular, we show that it allows an approximately 22-fold robust patient-specific LAR reduction for infants and a 10-fold LAR reduction for adults. Using a normal laptop, the proposed algorithm for PMS allows cheap and robust (with a multiscale structural similarity index >90%) denoising of very large 2D videos and 3D images (with over 107 voxels) that are subject to ultra-strong noise (Gaussian and non-Gaussian) for signal-to-noise ratios far below 1.0. The code is provided for open access.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Imaging
ISSN
2313-433X
e-ISSN
2313-433X
Svazek periodika
8
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
25
Strana od-do
"nestrankovano"
Kód UT WoS článku
000817351400001
EID výsledku v databázi Scopus
2-s2.0-85131675100