Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Low-Cost Probabilistic 3D Denoising with Applications for Ultra-Low-Radiation Computed Tomography

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27120%2F22%3A10250373" target="_blank" >RIV/61989100:27120/22:10250373 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2313-433X/8/6/156" target="_blank" >https://www.mdpi.com/2313-433X/8/6/156</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/jimaging8060156" target="_blank" >10.3390/jimaging8060156</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Low-Cost Probabilistic 3D Denoising with Applications for Ultra-Low-Radiation Computed Tomography

  • Popis výsledku v původním jazyce

    We propose a pipeline for synthetic generation of personalized Computer Tomography (CT) images, with a radiation exposure evaluation and a lifetime attributable risk (LAR) assessment. We perform a patient-specific performance evaluation for a broad range of denoising algorithms (including the most popular deep learning denoising approaches, wavelets-based methods, methods based on Mumford-Shah denoising, etc.), focusing both on accessing the capability to reduce the patient-specific CT-induced LAR and on computational cost scalability. We introduce a parallel Probabilistic Mumford-Shah denoising model (PMS) and show that it markedly-outperforms the compared common denoising methods in denoising quality and cost scaling. In particular, we show that it allows an approximately 22-fold robust patient-specific LAR reduction for infants and a 10-fold LAR reduction for adults. Using a normal laptop, the proposed algorithm for PMS allows cheap and robust (with a multiscale structural similarity index &gt;90%) denoising of very large 2D videos and 3D images (with over 107 voxels) that are subject to ultra-strong noise (Gaussian and non-Gaussian) for signal-to-noise ratios far below 1.0. The code is provided for open access.

  • Název v anglickém jazyce

    Low-Cost Probabilistic 3D Denoising with Applications for Ultra-Low-Radiation Computed Tomography

  • Popis výsledku anglicky

    We propose a pipeline for synthetic generation of personalized Computer Tomography (CT) images, with a radiation exposure evaluation and a lifetime attributable risk (LAR) assessment. We perform a patient-specific performance evaluation for a broad range of denoising algorithms (including the most popular deep learning denoising approaches, wavelets-based methods, methods based on Mumford-Shah denoising, etc.), focusing both on accessing the capability to reduce the patient-specific CT-induced LAR and on computational cost scalability. We introduce a parallel Probabilistic Mumford-Shah denoising model (PMS) and show that it markedly-outperforms the compared common denoising methods in denoising quality and cost scaling. In particular, we show that it allows an approximately 22-fold robust patient-specific LAR reduction for infants and a 10-fold LAR reduction for adults. Using a normal laptop, the proposed algorithm for PMS allows cheap and robust (with a multiscale structural similarity index &gt;90%) denoising of very large 2D videos and 3D images (with over 107 voxels) that are subject to ultra-strong noise (Gaussian and non-Gaussian) for signal-to-noise ratios far below 1.0. The code is provided for open access.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Imaging

  • ISSN

    2313-433X

  • e-ISSN

    2313-433X

  • Svazek periodika

    8

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    25

  • Strana od-do

    "nestrankovano"

  • Kód UT WoS článku

    000817351400001

  • EID výsledku v databázi Scopus

    2-s2.0-85131675100