Numerical Procedure for Solving the Nonlinear Behaviour of a Spherical Absorber
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27120%2F23%3A10252755" target="_blank" >RIV/61989100:27120/23:10252755 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.fast.vsb.cz/export/sites/fast/228/cs/mmconference/mm-historie/mm2023_sbornik_abstraktu.pdf" target="_blank" >https://www.fast.vsb.cz/export/sites/fast/228/cs/mmconference/mm-historie/mm2023_sbornik_abstraktu.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Numerical Procedure for Solving the Nonlinear Behaviour of a Spherical Absorber
Popis výsledku v původním jazyce
This article is aimed at providing one of possible approaches to carry out numerical computations of a nonlinear system of equations of motion. The approach is demonstrated using an example of a ball absorber placed on a support bowl. The motion of the ball is constrained to a planar problem. The numerical solution of the derived system of equations is carried out using the continuation method and the modified secant method. By these techniques, the response of the absorber to different amplitudes of harmonic excitation force is simulated. The results are presented as a graphical representation of the dependence of the response amplitude on the excitation angular frequency. These results also include the identification of stable and unstable solution regions using the values of the determinant of relevant Jacobian matrix.
Název v anglickém jazyce
Numerical Procedure for Solving the Nonlinear Behaviour of a Spherical Absorber
Popis výsledku anglicky
This article is aimed at providing one of possible approaches to carry out numerical computations of a nonlinear system of equations of motion. The approach is demonstrated using an example of a ball absorber placed on a support bowl. The motion of the ball is constrained to a planar problem. The numerical solution of the derived system of equations is carried out using the continuation method and the modified secant method. By these techniques, the response of the absorber to different amplitudes of harmonic excitation force is simulated. The results are presented as a graphical representation of the dependence of the response amplitude on the excitation angular frequency. These results also include the identification of stable and unstable solution regions using the values of the determinant of relevant Jacobian matrix.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20100 - Civil engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů