On Entropic Learning from Noisy Time Series in the Small Data Regime
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27120%2F24%3A10255905" target="_blank" >RIV/61989100:27120/24:10255905 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1099-4300/26/7/553" target="_blank" >https://www.mdpi.com/1099-4300/26/7/553</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/e26070553" target="_blank" >10.3390/e26070553</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Entropic Learning from Noisy Time Series in the Small Data Regime
Popis výsledku v původním jazyce
In this work, we present a novel methodology for performing the supervised classification of time-ordered noisy data; we call this methodology Entropic Sparse Probabilistic Approximation with Markov regularization (eSPA-Markov). It is an extension of entropic learning methodologies, allowing the simultaneous learning of segmentation patterns, entropy-optimal feature space discretizations, and Bayesian classification rules. We prove the conditions for the existence and uniqueness of the learning problem solution and propose a one-shot numerical learning algorithm that-in the leading order-scales linearly in dimension. We show how this technique can be used for the computationally scalable identification of persistent (metastable) regime affiliations and regime switches from high-dimensional non-stationary and noisy time series, i.e., when the size of the data statistics is small compared to their dimensionality and when the noise variance is larger than the variance in the signal. We demonstrate its performance on a set of toy learning problems, comparing eSPA-Markov to state-of-the-art techniques, including deep learning and random forests. We show how this technique can be used for the analysis of noisy time series from DNA and RNA Nanopore sequencing. (C) 2024 by the authors.
Název v anglickém jazyce
On Entropic Learning from Noisy Time Series in the Small Data Regime
Popis výsledku anglicky
In this work, we present a novel methodology for performing the supervised classification of time-ordered noisy data; we call this methodology Entropic Sparse Probabilistic Approximation with Markov regularization (eSPA-Markov). It is an extension of entropic learning methodologies, allowing the simultaneous learning of segmentation patterns, entropy-optimal feature space discretizations, and Bayesian classification rules. We prove the conditions for the existence and uniqueness of the learning problem solution and propose a one-shot numerical learning algorithm that-in the leading order-scales linearly in dimension. We show how this technique can be used for the computationally scalable identification of persistent (metastable) regime affiliations and regime switches from high-dimensional non-stationary and noisy time series, i.e., when the size of the data statistics is small compared to their dimensionality and when the noise variance is larger than the variance in the signal. We demonstrate its performance on a set of toy learning problems, comparing eSPA-Markov to state-of-the-art techniques, including deep learning and random forests. We show how this technique can be used for the analysis of noisy time series from DNA and RNA Nanopore sequencing. (C) 2024 by the authors.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Entropy
ISSN
1099-4300
e-ISSN
—
Svazek periodika
26
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
25
Strana od-do
"neuvedeno"
Kód UT WoS článku
001277280300001
EID výsledku v databázi Scopus
2-s2.0-85199885289