Heat and Mass Transfer Analysis within a Disc-Shaped Fluidized Sorption Reaktor
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27200%2F23%3A10254404" target="_blank" >RIV/61989100:27200/23:10254404 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.52202/069564-0042" target="_blank" >http://dx.doi.org/10.52202/069564-0042</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.52202/069564-0042" target="_blank" >10.52202/069564-0042</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Heat and Mass Transfer Analysis within a Disc-Shaped Fluidized Sorption Reaktor
Popis výsledku v původním jazyce
The depletion of fossil fuels and increased greenhouse gas emissions are crucial factors forcing innovation in various branches of industry and life. In the 21st-century air conditioning is becoming a necessity in terms of well-being and health. Therefore, adsorption cooling technology constitutes a very promising alternative to energy-consuming and environmentally hazardous vapour compression chillers. The main challenge in the wider popularization of adsorption technology is the intensification of heat and mass transfer within the adsorption bed. Therefore, the paper presents different sorption reactor concepts aimed at solving the aforementioned issue. The main parameters influencing heat and mass transfer for each of the analyzed cases are calculated using the computational fluid dynamics code adapted to capture the specific phenomenon occurring in the adsorption bed. The developed numerical model is validated against the experimental data collected on the test stand dedicated to experimental research of innovative adsorption beds operating in various conditions. The results of numerical modelling with the use of the developed coupled CFD & DEM model concerning the adsorbent particles movement and variation in relative temperature of the adsorbent within the fluidization process are presented in the paper. The research allowed to define the design parameters of the adsorption bed that allow intensifying the heat and mass transfer in the adsorption reactor and, in consequence, significantly contribute to the development and popularization of the adsorption cooling technology. (C) (2023) by ECOS 2023 All rights reserved.
Název v anglickém jazyce
Heat and Mass Transfer Analysis within a Disc-Shaped Fluidized Sorption Reaktor
Popis výsledku anglicky
The depletion of fossil fuels and increased greenhouse gas emissions are crucial factors forcing innovation in various branches of industry and life. In the 21st-century air conditioning is becoming a necessity in terms of well-being and health. Therefore, adsorption cooling technology constitutes a very promising alternative to energy-consuming and environmentally hazardous vapour compression chillers. The main challenge in the wider popularization of adsorption technology is the intensification of heat and mass transfer within the adsorption bed. Therefore, the paper presents different sorption reactor concepts aimed at solving the aforementioned issue. The main parameters influencing heat and mass transfer for each of the analyzed cases are calculated using the computational fluid dynamics code adapted to capture the specific phenomenon occurring in the adsorption bed. The developed numerical model is validated against the experimental data collected on the test stand dedicated to experimental research of innovative adsorption beds operating in various conditions. The results of numerical modelling with the use of the developed coupled CFD & DEM model concerning the adsorbent particles movement and variation in relative temperature of the adsorbent within the fluidization process are presented in the paper. The research allowed to define the design parameters of the adsorption bed that allow intensifying the heat and mass transfer in the adsorption reactor and, in consequence, significantly contribute to the development and popularization of the adsorption cooling technology. (C) (2023) by ECOS 2023 All rights reserved.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20402 - Chemical process engineering
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems : proceedings of ECOS 2023
ISBN
978-1-71387-492-8
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
460-469
Název nakladatele
Rheinisch-Westfälische Technische Hochschule (RWTH)
Místo vydání
Cháchy
Místo konání akce
Las Palmas de Gran Canaria
Datum konání akce
25. 6. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—