On finite single-server queue subject to non-preemptive breakdowns
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F13%3A86087662" target="_blank" >RIV/61989100:27230/13:86087662 - isvavai.cz</a>
Výsledek na webu
<a href="https://mme2013.vspj.cz/about-conference/conference-proceedings" target="_blank" >https://mme2013.vspj.cz/about-conference/conference-proceedings</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On finite single-server queue subject to non-preemptive breakdowns
Popis výsledku v původním jazyce
The paper deals with modelling and simulation of a finite single-server queueing system with a server subject to breakdowns. We consider that customers come to the queueing system in the Poisson stream. Customers incoming to the system are served according to the FCFS discipline, service times are considered to follow the Erlang distribution defined by the shape parameter and the scale parameter. Customers can wait for the service in the queue which length is limited by (m-1) places, that means the total capacity of the queueing system is equal to m places. Further, we assume that the server can break down. Breakdowns of the server are considered to be non-preemptive that means when a breakdown occurs during customer servicing it is possible to finishit before server repair is started. Times between breakdowns and repair times are assumed to follow the exponential distribution. We model the queue as a quasi-birth death process for which we present steady-state diagram and equation sys
Název v anglickém jazyce
On finite single-server queue subject to non-preemptive breakdowns
Popis výsledku anglicky
The paper deals with modelling and simulation of a finite single-server queueing system with a server subject to breakdowns. We consider that customers come to the queueing system in the Poisson stream. Customers incoming to the system are served according to the FCFS discipline, service times are considered to follow the Erlang distribution defined by the shape parameter and the scale parameter. Customers can wait for the service in the queue which length is limited by (m-1) places, that means the total capacity of the queueing system is equal to m places. Further, we assume that the server can break down. Breakdowns of the server are considered to be non-preemptive that means when a breakdown occurs during customer servicing it is possible to finishit before server repair is started. Times between breakdowns and repair times are assumed to follow the exponential distribution. We model the queue as a quasi-birth death process for which we present steady-state diagram and equation sys
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Mathematical Methods in Economics 2013 : 31st international conference : 11-13 September 2013, Jihlava, Czech Republic
ISBN
978-80-87035-76-4
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
141-146
Název nakladatele
College of Polytechnics Jihlava
Místo vydání
Jihlava
Místo konání akce
Jihlava
Datum konání akce
11. 9. 2013
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—