Implementation of MAKOC cyclic plasticity model with memory
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F17%3A10238023" target="_blank" >RIV/61989100:27230/17:10238023 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/17:10238023
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0965997816305749" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0965997816305749</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.advengsoft.2016.10.009" target="_blank" >10.1016/j.advengsoft.2016.10.009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Implementation of MAKOC cyclic plasticity model with memory
Popis výsledku v původním jazyce
This paper deals with the description of implementation of the advanced cyclic plasticity model called MAKOC, which is based on the AbdelKarim-Ohno kinematic hardening rule, the isotropic hardening rule of Calloch and a memory surface introduced in a stress space in accordance with the Jiang-Sehitoglu concept. The capabilities of the MAKOC model are compared with the Chaboche model included in some FE codes. Cyclic plasticity models commonly included in commercial FE software cannot accurately describe the behavior of the material, especially in the case of additional hardening caused by non-proportional loading of the material. This fact is presented on the experimental data set of aluminum alloy 2124T851. Steady state material behavior is studied with regard to the subsequent application in computational fatigue analysis. The cyclic plasticity model developed was implemented into the FE code ANSYS 15.0 using Fortran subroutines for 1D, 2D as well as 3D elements. The integration scheme is described in detail including the method of implementing the model and determining an error map for the proposed MAKOC and Chaboche models. The numerical tangent modulus is proposed to ensure parabolic convergence of the Newton-Raphson method for the MAKOC model. An axisymmetric analysis of 3D Hertz problem was performed to show convergence in the local as well as global iterations. © 2016.
Název v anglickém jazyce
Implementation of MAKOC cyclic plasticity model with memory
Popis výsledku anglicky
This paper deals with the description of implementation of the advanced cyclic plasticity model called MAKOC, which is based on the AbdelKarim-Ohno kinematic hardening rule, the isotropic hardening rule of Calloch and a memory surface introduced in a stress space in accordance with the Jiang-Sehitoglu concept. The capabilities of the MAKOC model are compared with the Chaboche model included in some FE codes. Cyclic plasticity models commonly included in commercial FE software cannot accurately describe the behavior of the material, especially in the case of additional hardening caused by non-proportional loading of the material. This fact is presented on the experimental data set of aluminum alloy 2124T851. Steady state material behavior is studied with regard to the subsequent application in computational fatigue analysis. The cyclic plasticity model developed was implemented into the FE code ANSYS 15.0 using Fortran subroutines for 1D, 2D as well as 3D elements. The integration scheme is described in detail including the method of implementing the model and determining an error map for the proposed MAKOC and Chaboche models. The numerical tangent modulus is proposed to ensure parabolic convergence of the Newton-Raphson method for the MAKOC model. An axisymmetric analysis of 3D Hertz problem was performed to show convergence in the local as well as global iterations. © 2016.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20306 - Audio engineering, reliability analysis
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Engineering Software
ISSN
0965-9978
e-ISSN
—
Svazek periodika
113
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
"34–46"
Kód UT WoS článku
000413675600006
EID výsledku v databázi Scopus
2-s2.0-85006759514