Stochastic strength analysis of compression headless screw
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F20%3A10244915" target="_blank" >RIV/61989100:27230/20:10244915 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00843989:_____/20:E0108426
Výsledek na webu
<a href="https://www.mmscience.eu/journal/issues/March%202020/articles/stochastic-strength-analysis-of-compression-headless-screw" target="_blank" >https://www.mmscience.eu/journal/issues/March%202020/articles/stochastic-strength-analysis-of-compression-headless-screw</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17973/MMSJ.2020_03_2019133" target="_blank" >10.17973/MMSJ.2020_03_2019133</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stochastic strength analysis of compression headless screw
Popis výsledku v původním jazyce
This article deals with strength and stiffness analysis of headless screw. This issue was solved in cooperation with engineering industry and doctors. The problem was solved using a stochastic approach, which utilizes the field of random events (simulations), which are applied for determination of input values. The prototype of headless (Herbert) screw Ti4.0/1.4x30/75 was used for solving this problem. Mathematical equations for analytical calculation of the maximal equivalent stress in screw were established. This issue is statically indeterminate problem in compressive and tensile stresses and needs one more equation (i.e. the condition of deformation), which describes relationship between extension of screw and contraction of bone. Resulting values are not defined for one specific model, but the simulation is taking into account a large amount of random samples (specifically 5E6 random simulations), which are distributed by bounded histograms. Furthermore, the probabilistic functions of simulated screw were determined. Due to stochastic strength analysis of headless screw, it meets reliability conditions for practical application in osteosynthetic treatment, see [Frydrysek 2016]. (C) 2020, MM publishing Ltd. All rights reserved.
Název v anglickém jazyce
Stochastic strength analysis of compression headless screw
Popis výsledku anglicky
This article deals with strength and stiffness analysis of headless screw. This issue was solved in cooperation with engineering industry and doctors. The problem was solved using a stochastic approach, which utilizes the field of random events (simulations), which are applied for determination of input values. The prototype of headless (Herbert) screw Ti4.0/1.4x30/75 was used for solving this problem. Mathematical equations for analytical calculation of the maximal equivalent stress in screw were established. This issue is statically indeterminate problem in compressive and tensile stresses and needs one more equation (i.e. the condition of deformation), which describes relationship between extension of screw and contraction of bone. Resulting values are not defined for one specific model, but the simulation is taking into account a large amount of random samples (specifically 5E6 random simulations), which are distributed by bounded histograms. Furthermore, the probabilistic functions of simulated screw were determined. Due to stochastic strength analysis of headless screw, it meets reliability conditions for practical application in osteosynthetic treatment, see [Frydrysek 2016]. (C) 2020, MM publishing Ltd. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MM Science Journal
ISSN
1803-1269
e-ISSN
—
Svazek periodika
2020
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
4
Strana od-do
3837-3840
Kód UT WoS článku
000532576800024
EID výsledku v databázi Scopus
2-s2.0-85081027260