The learning path to neural network industrial application in distributed environments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F21%3A10248432" target="_blank" >RIV/61989100:27230/21:10248432 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-9717/9/12/2247" target="_blank" >https://www.mdpi.com/2227-9717/9/12/2247</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/pr9122247" target="_blank" >10.3390/pr9122247</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The learning path to neural network industrial application in distributed environments
Popis výsledku v původním jazyce
Industrial companies focus on efficiency and cost reduction, which is very closely related to production process safety and secured environments enabling production with reduced risks and minimized cost on machines maintenance. Legacy systems are being replaced with new systems built into distributed production environments and equipped with machine learning algorithms that help to make this change more effective and efficient. A distributed control system consists of several subsystems distributed across areas and sites requiring application interfaces built across a control network. Data acquisition and data processing are challenging processes. This contribution aims to present an approach for the data collection based on features standardized in industry and for data classification processed with an applied machine learning algorithm for distinguishing exceptions in a dataset. Files with classified exceptions can be used to train prediction models to make forecasts in a large amount of data. (C) 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Název v anglickém jazyce
The learning path to neural network industrial application in distributed environments
Popis výsledku anglicky
Industrial companies focus on efficiency and cost reduction, which is very closely related to production process safety and secured environments enabling production with reduced risks and minimized cost on machines maintenance. Legacy systems are being replaced with new systems built into distributed production environments and equipped with machine learning algorithms that help to make this change more effective and efficient. A distributed control system consists of several subsystems distributed across areas and sites requiring application interfaces built across a control network. Data acquisition and data processing are challenging processes. This contribution aims to present an approach for the data collection based on features standardized in industry and for data classification processed with an applied machine learning algorithm for distinguishing exceptions in a dataset. Files with classified exceptions can be used to train prediction models to make forecasts in a large amount of data. (C) 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Centrum výzkumu pokročilých mechatronických systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Processes
ISSN
2227-9717
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
—
Kód UT WoS článku
000737407900001
EID výsledku v databázi Scopus
2-s2.0-85121731731