Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The learning path to neural network industrial application in distributed environments

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F21%3A10248432" target="_blank" >RIV/61989100:27230/21:10248432 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2227-9717/9/12/2247" target="_blank" >https://www.mdpi.com/2227-9717/9/12/2247</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/pr9122247" target="_blank" >10.3390/pr9122247</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The learning path to neural network industrial application in distributed environments

  • Popis výsledku v původním jazyce

    Industrial companies focus on efficiency and cost reduction, which is very closely related to production process safety and secured environments enabling production with reduced risks and minimized cost on machines maintenance. Legacy systems are being replaced with new systems built into distributed production environments and equipped with machine learning algorithms that help to make this change more effective and efficient. A distributed control system consists of several subsystems distributed across areas and sites requiring application interfaces built across a control network. Data acquisition and data processing are challenging processes. This contribution aims to present an approach for the data collection based on features standardized in industry and for data classification processed with an applied machine learning algorithm for distinguishing exceptions in a dataset. Files with classified exceptions can be used to train prediction models to make forecasts in a large amount of data. (C) 2021 by the authors. Licensee MDPI, Basel, Switzerland.

  • Název v anglickém jazyce

    The learning path to neural network industrial application in distributed environments

  • Popis výsledku anglicky

    Industrial companies focus on efficiency and cost reduction, which is very closely related to production process safety and secured environments enabling production with reduced risks and minimized cost on machines maintenance. Legacy systems are being replaced with new systems built into distributed production environments and equipped with machine learning algorithms that help to make this change more effective and efficient. A distributed control system consists of several subsystems distributed across areas and sites requiring application interfaces built across a control network. Data acquisition and data processing are challenging processes. This contribution aims to present an approach for the data collection based on features standardized in industry and for data classification processed with an applied machine learning algorithm for distinguishing exceptions in a dataset. Files with classified exceptions can be used to train prediction models to make forecasts in a large amount of data. (C) 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20301 - Mechanical engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Centrum výzkumu pokročilých mechatronických systémů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Processes

  • ISSN

    2227-9717

  • e-ISSN

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    16

  • Strana od-do

  • Kód UT WoS článku

    000737407900001

  • EID výsledku v databázi Scopus

    2-s2.0-85121731731