A Conceptual Comparison of Six Nature-Inspired Metaheuristic Algorithms in Process Optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F22%3A10249735" target="_blank" >RIV/61989100:27230/22:10249735 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000778142900001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000778142900001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/pr10020197" target="_blank" >10.3390/pr10020197</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Conceptual Comparison of Six Nature-Inspired Metaheuristic Algorithms in Process Optimization
Popis výsledku v původním jazyce
In recent years, several high-performance nature-inspired metaheuristic algorithms have been proposed. It is important to study and compare the convergence, computational burden and statistical significance of these metaheuristics to aid future developments. This study focuses on six recent metaheuristics, namely, ant lion optimization (ALO), arithmetic optimization algorithm (AOA), dragonfly algorithm (DA), grey wolf optimizer (GWO), salp swarm algorithm (SSA) and whale optimization algorithm (WOA). Optimization of an industrial machining application is tackled in this paper. The optimal machining parameters (peak current, duty factor, wire tension and water pressure) of WEDM are predicted using the six aforementioned metaheuristics. The objective functions of the optimization study are to maximize the material removal rate (MRR) and minimize the wear ratio (WR) and surface roughness (SR). All of the current algorithms have been seen to surpass existing results, thereby indicating their superiority over conventional optimization algorithms.
Název v anglickém jazyce
A Conceptual Comparison of Six Nature-Inspired Metaheuristic Algorithms in Process Optimization
Popis výsledku anglicky
In recent years, several high-performance nature-inspired metaheuristic algorithms have been proposed. It is important to study and compare the convergence, computational burden and statistical significance of these metaheuristics to aid future developments. This study focuses on six recent metaheuristics, namely, ant lion optimization (ALO), arithmetic optimization algorithm (AOA), dragonfly algorithm (DA), grey wolf optimizer (GWO), salp swarm algorithm (SSA) and whale optimization algorithm (WOA). Optimization of an industrial machining application is tackled in this paper. The optimal machining parameters (peak current, duty factor, wire tension and water pressure) of WEDM are predicted using the six aforementioned metaheuristics. The objective functions of the optimization study are to maximize the material removal rate (MRR) and minimize the wear ratio (WR) and surface roughness (SR). All of the current algorithms have been seen to surpass existing results, thereby indicating their superiority over conventional optimization algorithms.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20300 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Processes
ISSN
2227-9717
e-ISSN
2227-9717
Svazek periodika
10
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
20
Strana od-do
nestrankovano
Kód UT WoS článku
000778142900001
EID výsledku v databázi Scopus
2-s2.0-85124291857