Machine-Learning-Assisted Prediction of Maximum Metal Recovery from Spent Zinc-Manganese Batteries
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F22%3A10249913" target="_blank" >RIV/61989100:27230/22:10249913 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-9717/10/5/1034" target="_blank" >https://www.mdpi.com/2227-9717/10/5/1034</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/pr10051034" target="_blank" >10.3390/pr10051034</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine-Learning-Assisted Prediction of Maximum Metal Recovery from Spent Zinc-Manganese Batteries
Popis výsledku v původním jazyce
Spent zinc-manganese batteries contain heavy toxic metals that pose a serious threat to the environment. Recovering these metals is vital not only for industrial use but also for saving the environment. Recycling metal from spent batteries is a complex task. In this study, machine-learning-based predictive models are developed for predicting metal recovery from spent zinc-manganese batteries by studying the energy substrates concentration, pH control of bioleaching media, incubating temperature and pulp density. The main objective of this study is to make a detailed comparison among five machine learning models, namely, linear regression, random forest regression, AdaBoost regression, gradient boosting regression and XG boost regression. All the machine learning models are tuned for optimal hyperparameters. The results from each of the machine learning models are compared using several statistical metrics such as R-2, mean squared error (MSE), mean absolute error (MAE), maximum error and median error. The XG Boost regression model is observed to be the most effective among the tested algorithms.
Název v anglickém jazyce
Machine-Learning-Assisted Prediction of Maximum Metal Recovery from Spent Zinc-Manganese Batteries
Popis výsledku anglicky
Spent zinc-manganese batteries contain heavy toxic metals that pose a serious threat to the environment. Recovering these metals is vital not only for industrial use but also for saving the environment. Recycling metal from spent batteries is a complex task. In this study, machine-learning-based predictive models are developed for predicting metal recovery from spent zinc-manganese batteries by studying the energy substrates concentration, pH control of bioleaching media, incubating temperature and pulp density. The main objective of this study is to make a detailed comparison among five machine learning models, namely, linear regression, random forest regression, AdaBoost regression, gradient boosting regression and XG boost regression. All the machine learning models are tuned for optimal hyperparameters. The results from each of the machine learning models are compared using several statistical metrics such as R-2, mean squared error (MSE), mean absolute error (MAE), maximum error and median error. The XG Boost regression model is observed to be the most effective among the tested algorithms.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Processes
ISSN
2227-9717
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
1-14
Kód UT WoS článku
000804291600001
EID výsledku v databázi Scopus
2-s2.0-85131037283