Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Acoustic Emission Signal Characterisation of Failure Mechanisms in CFRP Composites Using Dual-Sensor Approach and Spectral Clustering Technique

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F23%3A10251336" target="_blank" >RIV/61989100:27230/23:10251336 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/record/display.uri?origin=resultslist&eid=2-s2.0-85146050865" target="_blank" >https://www.scopus.com/record/display.uri?origin=resultslist&eid=2-s2.0-85146050865</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/polym15010047" target="_blank" >10.3390/polym15010047</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Acoustic Emission Signal Characterisation of Failure Mechanisms in CFRP Composites Using Dual-Sensor Approach and Spectral Clustering Technique

  • Popis výsledku v původním jazyce

    The characterisation of failure mechanisms in carbon fibre-reinforced polymer (CFRP) materials using the acoustic emission (AE) technique has been the topic of a number of publications. However, it is often challenging to obtain comprehensive and reliable information about individual failure mechanisms. This situation was the impetus for elaborating a comprehensive overview that covers all failure mechanisms within the framework of CFRP materials. Thus, we performed tensile and compact tension tests on specimens with various stacking sequences to induce specific failure modes and mechanisms. The AE activity was monitored using two different wideband AE sensors and further analysed using a hybrid AE hit detection process. The datasets received from both sensors were separately subjected to clustering analysis using the spectral clustering technique, which incorporated an unsupervised k-means clustering algorithm. The failure mechanism analysis also included a proposed filtering process based on the power distribution across the considered frequency range, with which it was possible to distinguish between the fibre pull-out and fibre breakage mechanisms. This functionality was particularly useful in cases where it was evident that the above-mentioned damage mechanisms exhibited very similar parametric characteristics. The results of the clustering analysis were compared to those of the scanning electron microscopy analysis, which confirmed the conclusions of the AE data analysis. (C) 2022 by the authors.

  • Název v anglickém jazyce

    Acoustic Emission Signal Characterisation of Failure Mechanisms in CFRP Composites Using Dual-Sensor Approach and Spectral Clustering Technique

  • Popis výsledku anglicky

    The characterisation of failure mechanisms in carbon fibre-reinforced polymer (CFRP) materials using the acoustic emission (AE) technique has been the topic of a number of publications. However, it is often challenging to obtain comprehensive and reliable information about individual failure mechanisms. This situation was the impetus for elaborating a comprehensive overview that covers all failure mechanisms within the framework of CFRP materials. Thus, we performed tensile and compact tension tests on specimens with various stacking sequences to induce specific failure modes and mechanisms. The AE activity was monitored using two different wideband AE sensors and further analysed using a hybrid AE hit detection process. The datasets received from both sensors were separately subjected to clustering analysis using the spectral clustering technique, which incorporated an unsupervised k-means clustering algorithm. The failure mechanism analysis also included a proposed filtering process based on the power distribution across the considered frequency range, with which it was possible to distinguish between the fibre pull-out and fibre breakage mechanisms. This functionality was particularly useful in cases where it was evident that the above-mentioned damage mechanisms exhibited very similar parametric characteristics. The results of the clustering analysis were compared to those of the scanning electron microscopy analysis, which confirmed the conclusions of the AE data analysis. (C) 2022 by the authors.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10307 - Acoustics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Polymers

  • ISSN

    2073-4360

  • e-ISSN

    2073-4360

  • Svazek periodika

    15

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    25

  • Strana od-do

  • Kód UT WoS článku

    000909679900001

  • EID výsledku v databázi Scopus

    2-s2.0-85146050865