Acoustic Emission Signal Characterisation of Failure Mechanisms in CFRP Composites Using Dual-Sensor Approach and Spectral Clustering Technique
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F23%3A10251336" target="_blank" >RIV/61989100:27230/23:10251336 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/record/display.uri?origin=resultslist&eid=2-s2.0-85146050865" target="_blank" >https://www.scopus.com/record/display.uri?origin=resultslist&eid=2-s2.0-85146050865</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/polym15010047" target="_blank" >10.3390/polym15010047</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Acoustic Emission Signal Characterisation of Failure Mechanisms in CFRP Composites Using Dual-Sensor Approach and Spectral Clustering Technique
Popis výsledku v původním jazyce
The characterisation of failure mechanisms in carbon fibre-reinforced polymer (CFRP) materials using the acoustic emission (AE) technique has been the topic of a number of publications. However, it is often challenging to obtain comprehensive and reliable information about individual failure mechanisms. This situation was the impetus for elaborating a comprehensive overview that covers all failure mechanisms within the framework of CFRP materials. Thus, we performed tensile and compact tension tests on specimens with various stacking sequences to induce specific failure modes and mechanisms. The AE activity was monitored using two different wideband AE sensors and further analysed using a hybrid AE hit detection process. The datasets received from both sensors were separately subjected to clustering analysis using the spectral clustering technique, which incorporated an unsupervised k-means clustering algorithm. The failure mechanism analysis also included a proposed filtering process based on the power distribution across the considered frequency range, with which it was possible to distinguish between the fibre pull-out and fibre breakage mechanisms. This functionality was particularly useful in cases where it was evident that the above-mentioned damage mechanisms exhibited very similar parametric characteristics. The results of the clustering analysis were compared to those of the scanning electron microscopy analysis, which confirmed the conclusions of the AE data analysis. (C) 2022 by the authors.
Název v anglickém jazyce
Acoustic Emission Signal Characterisation of Failure Mechanisms in CFRP Composites Using Dual-Sensor Approach and Spectral Clustering Technique
Popis výsledku anglicky
The characterisation of failure mechanisms in carbon fibre-reinforced polymer (CFRP) materials using the acoustic emission (AE) technique has been the topic of a number of publications. However, it is often challenging to obtain comprehensive and reliable information about individual failure mechanisms. This situation was the impetus for elaborating a comprehensive overview that covers all failure mechanisms within the framework of CFRP materials. Thus, we performed tensile and compact tension tests on specimens with various stacking sequences to induce specific failure modes and mechanisms. The AE activity was monitored using two different wideband AE sensors and further analysed using a hybrid AE hit detection process. The datasets received from both sensors were separately subjected to clustering analysis using the spectral clustering technique, which incorporated an unsupervised k-means clustering algorithm. The failure mechanism analysis also included a proposed filtering process based on the power distribution across the considered frequency range, with which it was possible to distinguish between the fibre pull-out and fibre breakage mechanisms. This functionality was particularly useful in cases where it was evident that the above-mentioned damage mechanisms exhibited very similar parametric characteristics. The results of the clustering analysis were compared to those of the scanning electron microscopy analysis, which confirmed the conclusions of the AE data analysis. (C) 2022 by the authors.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10307 - Acoustics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Polymers
ISSN
2073-4360
e-ISSN
2073-4360
Svazek periodika
15
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
25
Strana od-do
—
Kód UT WoS článku
000909679900001
EID výsledku v databázi Scopus
2-s2.0-85146050865