Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Study on Fuzzy Resolving Domination Sets and Their Application in Network Theory

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F23%3A10251789" target="_blank" >RIV/61989100:27230/23:10251789 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000927106500001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000927106500001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math11020317" target="_blank" >10.3390/math11020317</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Study on Fuzzy Resolving Domination Sets and Their Application in Network Theory

  • Popis výsledku v původním jazyce

    Consider a simple connected fuzzy graph (FG) G and consider an ordered fuzzy subset H = {(u(1), sigma(u(1))), (u(2), sigma(u(2))), horizontal ellipsis (u(k), sigma(u(k)))}, |H| &gt;= 2 of a fuzzy graph; then, the representation of sigma - H is an ordered k-tuple with regard to H of G. If any two elements of sigma - H do not have any distinct representation with regard to H, then this subset is called a fuzzy resolving set (FRS) and the smallest cardinality of this set is known as a fuzzy resolving number (FRN) and it is denoted by Fr(G). Similarly, consider a subset S such that for any u is an element of S, there exists v is an element of V - S, then S is called a fuzzy dominating set only if u is a strong arc. Now, again consider a subset F which is both a resolving and dominating set, then it is called a fuzzy resolving domination set (FRDS) and the smallest cardinality of this set is known as the fuzzy resolving domination number (FRDN) and it is denoted by F-gamma r(G). We have defined a few basic properties and theorems based on this FRDN and also developed an application for social network connection. Moreover, a few related statements and illustrations are discussed in order to strengthen the concept.

  • Název v anglickém jazyce

    A Study on Fuzzy Resolving Domination Sets and Their Application in Network Theory

  • Popis výsledku anglicky

    Consider a simple connected fuzzy graph (FG) G and consider an ordered fuzzy subset H = {(u(1), sigma(u(1))), (u(2), sigma(u(2))), horizontal ellipsis (u(k), sigma(u(k)))}, |H| &gt;= 2 of a fuzzy graph; then, the representation of sigma - H is an ordered k-tuple with regard to H of G. If any two elements of sigma - H do not have any distinct representation with regard to H, then this subset is called a fuzzy resolving set (FRS) and the smallest cardinality of this set is known as a fuzzy resolving number (FRN) and it is denoted by Fr(G). Similarly, consider a subset S such that for any u is an element of S, there exists v is an element of V - S, then S is called a fuzzy dominating set only if u is a strong arc. Now, again consider a subset F which is both a resolving and dominating set, then it is called a fuzzy resolving domination set (FRDS) and the smallest cardinality of this set is known as the fuzzy resolving domination number (FRDN) and it is denoted by F-gamma r(G). We have defined a few basic properties and theorems based on this FRDN and also developed an application for social network connection. Moreover, a few related statements and illustrations are discussed in order to strengthen the concept.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20300 - Mechanical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    9

  • Strana od-do

  • Kód UT WoS článku

    000927106500001

  • EID výsledku v databázi Scopus