Efficient Feature Selection Using Weighted Superposition Attraction Optimization Algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F23%3A10252188" target="_blank" >RIV/61989100:27230/23:10252188 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000947652200001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000947652200001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app13053223" target="_blank" >10.3390/app13053223</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient Feature Selection Using Weighted Superposition Attraction Optimization Algorithm
Popis výsledku v původním jazyce
As the volume of data generated by information systems continues to increase, machine learning (ML) techniques have become essential for the extraction of meaningful insights. However, the sheer volume of data often causes these techniques to become sluggish. To overcome this, feature selection is a vital step in the pre-processing of data. In this paper, we introduce a novel K-nearest neighborhood (KNN)-based wrapper system for feature selection that leverages the iterative improvement ability of the weighted superposition attraction (WSA). We evaluate the performance of WSA against seven well-known metaheuristic algorithms, i.e., differential evolution (DE), genetic algorithm (GA), particle swarm optimization (PSO), flower pollination algorithm (FPA), symbiotic organisms search (SOS), marine predators' algorithm (MPA) and manta ray foraging optimization (MRFO). Our extensive numerical experiments demonstrate that WSA is highly effective for feature selection, achieving a decrease of up to 99% in the number of features for large datasets without sacrificing classification accuracy. In fact, WSA-KNN outperforms traditional ML methods by about 18% and ensemble ML algorithms by 9%. Moreover, WSA-KNN achieves comparable or slightly better solutions when compared with neural networks hybridized with metaheuristics. These findings highlight the importance and potential of WSA for feature selection in modern-day data processing systems.
Název v anglickém jazyce
Efficient Feature Selection Using Weighted Superposition Attraction Optimization Algorithm
Popis výsledku anglicky
As the volume of data generated by information systems continues to increase, machine learning (ML) techniques have become essential for the extraction of meaningful insights. However, the sheer volume of data often causes these techniques to become sluggish. To overcome this, feature selection is a vital step in the pre-processing of data. In this paper, we introduce a novel K-nearest neighborhood (KNN)-based wrapper system for feature selection that leverages the iterative improvement ability of the weighted superposition attraction (WSA). We evaluate the performance of WSA against seven well-known metaheuristic algorithms, i.e., differential evolution (DE), genetic algorithm (GA), particle swarm optimization (PSO), flower pollination algorithm (FPA), symbiotic organisms search (SOS), marine predators' algorithm (MPA) and manta ray foraging optimization (MRFO). Our extensive numerical experiments demonstrate that WSA is highly effective for feature selection, achieving a decrease of up to 99% in the number of features for large datasets without sacrificing classification accuracy. In fact, WSA-KNN outperforms traditional ML methods by about 18% and ensemble ML algorithms by 9%. Moreover, WSA-KNN achieves comparable or slightly better solutions when compared with neural networks hybridized with metaheuristics. These findings highlight the importance and potential of WSA for feature selection in modern-day data processing systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20300 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Sciences
ISSN
2076-3417
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
26
Strana od-do
—
Kód UT WoS článku
000947652200001
EID výsledku v databázi Scopus
—