Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Efficient Feature Selection Using Weighted Superposition Attraction Optimization Algorithm

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F23%3A10252188" target="_blank" >RIV/61989100:27230/23:10252188 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000947652200001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000947652200001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/app13053223" target="_blank" >10.3390/app13053223</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Efficient Feature Selection Using Weighted Superposition Attraction Optimization Algorithm

  • Popis výsledku v původním jazyce

    As the volume of data generated by information systems continues to increase, machine learning (ML) techniques have become essential for the extraction of meaningful insights. However, the sheer volume of data often causes these techniques to become sluggish. To overcome this, feature selection is a vital step in the pre-processing of data. In this paper, we introduce a novel K-nearest neighborhood (KNN)-based wrapper system for feature selection that leverages the iterative improvement ability of the weighted superposition attraction (WSA). We evaluate the performance of WSA against seven well-known metaheuristic algorithms, i.e., differential evolution (DE), genetic algorithm (GA), particle swarm optimization (PSO), flower pollination algorithm (FPA), symbiotic organisms search (SOS), marine predators&apos; algorithm (MPA) and manta ray foraging optimization (MRFO). Our extensive numerical experiments demonstrate that WSA is highly effective for feature selection, achieving a decrease of up to 99% in the number of features for large datasets without sacrificing classification accuracy. In fact, WSA-KNN outperforms traditional ML methods by about 18% and ensemble ML algorithms by 9%. Moreover, WSA-KNN achieves comparable or slightly better solutions when compared with neural networks hybridized with metaheuristics. These findings highlight the importance and potential of WSA for feature selection in modern-day data processing systems.

  • Název v anglickém jazyce

    Efficient Feature Selection Using Weighted Superposition Attraction Optimization Algorithm

  • Popis výsledku anglicky

    As the volume of data generated by information systems continues to increase, machine learning (ML) techniques have become essential for the extraction of meaningful insights. However, the sheer volume of data often causes these techniques to become sluggish. To overcome this, feature selection is a vital step in the pre-processing of data. In this paper, we introduce a novel K-nearest neighborhood (KNN)-based wrapper system for feature selection that leverages the iterative improvement ability of the weighted superposition attraction (WSA). We evaluate the performance of WSA against seven well-known metaheuristic algorithms, i.e., differential evolution (DE), genetic algorithm (GA), particle swarm optimization (PSO), flower pollination algorithm (FPA), symbiotic organisms search (SOS), marine predators&apos; algorithm (MPA) and manta ray foraging optimization (MRFO). Our extensive numerical experiments demonstrate that WSA is highly effective for feature selection, achieving a decrease of up to 99% in the number of features for large datasets without sacrificing classification accuracy. In fact, WSA-KNN outperforms traditional ML methods by about 18% and ensemble ML algorithms by 9%. Moreover, WSA-KNN achieves comparable or slightly better solutions when compared with neural networks hybridized with metaheuristics. These findings highlight the importance and potential of WSA for feature selection in modern-day data processing systems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20300 - Mechanical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Sciences

  • ISSN

    2076-3417

  • e-ISSN

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    26

  • Strana od-do

  • Kód UT WoS článku

    000947652200001

  • EID výsledku v databázi Scopus