ENABLING SMART FACTORY WITH DEEP RESIDUAL-AIDED GENERATIVE ADVERSARIAL NETWORK: PERFORMANCE ANALYSIS END-TO-END LEARNING OF MACHINE-TO- MACHINE
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F23%3A10255797" target="_blank" >RIV/61989100:27230/23:10255797 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mmscience.eu/journal/issues/june-2023/articles/enabling-smart-factory-with-deep-residual-aided-generative-adversarial-network-performance-analysis-end-to-end-learning-of-machine-to-machine" target="_blank" >https://www.mmscience.eu/journal/issues/june-2023/articles/enabling-smart-factory-with-deep-residual-aided-generative-adversarial-network-performance-analysis-end-to-end-learning-of-machine-to-machine</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17973/MMSJ.2023_06_2023031" target="_blank" >10.17973/MMSJ.2023_06_2023031</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ENABLING SMART FACTORY WITH DEEP RESIDUAL-AIDED GENERATIVE ADVERSARIAL NETWORK: PERFORMANCE ANALYSIS END-TO-END LEARNING OF MACHINE-TO- MACHINE
Popis výsledku v původním jazyce
Improving Machine-to-Machine (M2M) communication is essential for the development of Smart Factory as data can be exchanged and processed more efficiently. Herein this study, we employ the Deep Learning (DL) concepts aimed at improving end-to-end performance (E2E) M2M communication systems. Training the physical layers requires the explicit channel information to be fully known, which can be solved with generative adversarial network (GAN). Nonetheless, due to its deep neural network (DNN) structure, the GAN scheme is subjected to gradient vanishing and over-fitting, two major obstacles that can hinder the training process and limit the performance of the model. As a result, the system is significantly downgraded. To address these issues, we study a method known as Residual-Aided generative adversarial network (RA-GAN) learning scheme, in which the two problems are dealt with respectively by introducing a better propagation mechanism and a regularizer to the loss function. Herein this paper, the system model is described and the two problems are derived analytically. We also analyze the optimal learning scheme (where the channel-agnostic) and a Rayleigh-based learning scheme for comparison study. Through analyzing the block error rate (BLER), we can demonstrate that the RA-GAN approach achieves performance comparable to the optimal scheme, and significantly outperforms the conventional GAN method.
Název v anglickém jazyce
ENABLING SMART FACTORY WITH DEEP RESIDUAL-AIDED GENERATIVE ADVERSARIAL NETWORK: PERFORMANCE ANALYSIS END-TO-END LEARNING OF MACHINE-TO- MACHINE
Popis výsledku anglicky
Improving Machine-to-Machine (M2M) communication is essential for the development of Smart Factory as data can be exchanged and processed more efficiently. Herein this study, we employ the Deep Learning (DL) concepts aimed at improving end-to-end performance (E2E) M2M communication systems. Training the physical layers requires the explicit channel information to be fully known, which can be solved with generative adversarial network (GAN). Nonetheless, due to its deep neural network (DNN) structure, the GAN scheme is subjected to gradient vanishing and over-fitting, two major obstacles that can hinder the training process and limit the performance of the model. As a result, the system is significantly downgraded. To address these issues, we study a method known as Residual-Aided generative adversarial network (RA-GAN) learning scheme, in which the two problems are dealt with respectively by introducing a better propagation mechanism and a regularizer to the loss function. Herein this paper, the system model is described and the two problems are derived analytically. We also analyze the optimal learning scheme (where the channel-agnostic) and a Rayleigh-based learning scheme for comparison study. Through analyzing the block error rate (BLER), we can demonstrate that the RA-GAN approach achieves performance comparable to the optimal scheme, and significantly outperforms the conventional GAN method.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20300 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MM Science Journal
ISSN
1803-1269
e-ISSN
1805-0476
Svazek periodika
2023
Číslo periodika v rámci svazku
June 2023
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
7
Strana od-do
6527-6533
Kód UT WoS článku
001006493600001
EID výsledku v databázi Scopus
—