Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

ENABLING SMART FACTORY WITH DEEP RESIDUAL-AIDED GENERATIVE ADVERSARIAL NETWORK: PERFORMANCE ANALYSIS END-TO-END LEARNING OF MACHINE-TO- MACHINE

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F23%3A10255797" target="_blank" >RIV/61989100:27230/23:10255797 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mmscience.eu/journal/issues/june-2023/articles/enabling-smart-factory-with-deep-residual-aided-generative-adversarial-network-performance-analysis-end-to-end-learning-of-machine-to-machine" target="_blank" >https://www.mmscience.eu/journal/issues/june-2023/articles/enabling-smart-factory-with-deep-residual-aided-generative-adversarial-network-performance-analysis-end-to-end-learning-of-machine-to-machine</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.17973/MMSJ.2023_06_2023031" target="_blank" >10.17973/MMSJ.2023_06_2023031</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    ENABLING SMART FACTORY WITH DEEP RESIDUAL-AIDED GENERATIVE ADVERSARIAL NETWORK: PERFORMANCE ANALYSIS END-TO-END LEARNING OF MACHINE-TO- MACHINE

  • Popis výsledku v původním jazyce

    Improving Machine-to-Machine (M2M) communication is essential for the development of Smart Factory as data can be exchanged and processed more efficiently. Herein this study, we employ the Deep Learning (DL) concepts aimed at improving end-to-end performance (E2E) M2M communication systems. Training the physical layers requires the explicit channel information to be fully known, which can be solved with generative adversarial network (GAN). Nonetheless, due to its deep neural network (DNN) structure, the GAN scheme is subjected to gradient vanishing and over-fitting, two major obstacles that can hinder the training process and limit the performance of the model. As a result, the system is significantly downgraded. To address these issues, we study a method known as Residual-Aided generative adversarial network (RA-GAN) learning scheme, in which the two problems are dealt with respectively by introducing a better propagation mechanism and a regularizer to the loss function. Herein this paper, the system model is described and the two problems are derived analytically. We also analyze the optimal learning scheme (where the channel-agnostic) and a Rayleigh-based learning scheme for comparison study. Through analyzing the block error rate (BLER), we can demonstrate that the RA-GAN approach achieves performance comparable to the optimal scheme, and significantly outperforms the conventional GAN method.

  • Název v anglickém jazyce

    ENABLING SMART FACTORY WITH DEEP RESIDUAL-AIDED GENERATIVE ADVERSARIAL NETWORK: PERFORMANCE ANALYSIS END-TO-END LEARNING OF MACHINE-TO- MACHINE

  • Popis výsledku anglicky

    Improving Machine-to-Machine (M2M) communication is essential for the development of Smart Factory as data can be exchanged and processed more efficiently. Herein this study, we employ the Deep Learning (DL) concepts aimed at improving end-to-end performance (E2E) M2M communication systems. Training the physical layers requires the explicit channel information to be fully known, which can be solved with generative adversarial network (GAN). Nonetheless, due to its deep neural network (DNN) structure, the GAN scheme is subjected to gradient vanishing and over-fitting, two major obstacles that can hinder the training process and limit the performance of the model. As a result, the system is significantly downgraded. To address these issues, we study a method known as Residual-Aided generative adversarial network (RA-GAN) learning scheme, in which the two problems are dealt with respectively by introducing a better propagation mechanism and a regularizer to the loss function. Herein this paper, the system model is described and the two problems are derived analytically. We also analyze the optimal learning scheme (where the channel-agnostic) and a Rayleigh-based learning scheme for comparison study. Through analyzing the block error rate (BLER), we can demonstrate that the RA-GAN approach achieves performance comparable to the optimal scheme, and significantly outperforms the conventional GAN method.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20300 - Mechanical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    MM Science Journal

  • ISSN

    1803-1269

  • e-ISSN

    1805-0476

  • Svazek periodika

    2023

  • Číslo periodika v rámci svazku

    June 2023

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    7

  • Strana od-do

    6527-6533

  • Kód UT WoS článku

    001006493600001

  • EID výsledku v databázi Scopus