Constitutive modelling and damage prediction of AlSi10Mg alloy manufactured by SLM technology with emphasis on ratcheting in LCF regime
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10253588" target="_blank" >RIV/61989100:27230/24:10253588 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27360/24:10253588
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0142112323006163?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0142112323006163?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijfatigue.2023.108115" target="_blank" >10.1016/j.ijfatigue.2023.108115</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Constitutive modelling and damage prediction of AlSi10Mg alloy manufactured by SLM technology with emphasis on ratcheting in LCF regime
Popis výsledku v původním jazyce
The present work has been aimed at developing an improved cyclic plasticity model in the framework of Ohno-Wang kinematic hardening formulation and evaluating the performance of the model with reference to the critical experimental investigation. LCF test specimens of the AlSi10Mg aluminium alloy have been fabricated through selective laser melting technology. The material shows strain-range dependent variation of modulus of elasticity under symmetric strain-controlled loading. The modulus of elasticity decreases with increasing strain amplitude. Stress-strain responses have been critically examined under multistep uniaxial ratcheting in the LCF regime with incremental mean stress and stress amplitude. Damage calculation considering ratcheting and LCF mechanisms as independent gives unconservative predictions. The linear damage accumulation rule taking the largest contribution of both is bringing much more accurate estimates. The proposed model incorporates effects of mean stress and stress amplitude under uniaxial multistep ratcheting in the LCF regime. All fatigue tests in the LCF regime have been simulated using the proposed improved model. Evolution of strain-range dependent elastic modulus has been incorporated in the formulation of the improved model through the memory history dependent parameter. The ratcheting parameter is newly formulated in this present work to account for the effects of accumulated mean plastic strain on the opening of stress strain hysteresis loops that results in a better prediction of the behaviour of cyclic plastic deformation. The proposed model has been validated by comparing simulated results with experimental observations and reference published simulation results.
Název v anglickém jazyce
Constitutive modelling and damage prediction of AlSi10Mg alloy manufactured by SLM technology with emphasis on ratcheting in LCF regime
Popis výsledku anglicky
The present work has been aimed at developing an improved cyclic plasticity model in the framework of Ohno-Wang kinematic hardening formulation and evaluating the performance of the model with reference to the critical experimental investigation. LCF test specimens of the AlSi10Mg aluminium alloy have been fabricated through selective laser melting technology. The material shows strain-range dependent variation of modulus of elasticity under symmetric strain-controlled loading. The modulus of elasticity decreases with increasing strain amplitude. Stress-strain responses have been critically examined under multistep uniaxial ratcheting in the LCF regime with incremental mean stress and stress amplitude. Damage calculation considering ratcheting and LCF mechanisms as independent gives unconservative predictions. The linear damage accumulation rule taking the largest contribution of both is bringing much more accurate estimates. The proposed model incorporates effects of mean stress and stress amplitude under uniaxial multistep ratcheting in the LCF regime. All fatigue tests in the LCF regime have been simulated using the proposed improved model. Evolution of strain-range dependent elastic modulus has been incorporated in the formulation of the improved model through the memory history dependent parameter. The ratcheting parameter is newly formulated in this present work to account for the effects of accumulated mean plastic strain on the opening of stress strain hysteresis loops that results in a better prediction of the behaviour of cyclic plastic deformation. The proposed model has been validated by comparing simulated results with experimental observations and reference published simulation results.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20500 - Materials engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International journal of fatigue
ISSN
0142-1123
e-ISSN
1879-3452
Svazek periodika
181
Číslo periodika v rámci svazku
April
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
108115
Kód UT WoS článku
001165935400001
EID výsledku v databázi Scopus
2-s2.0-85181068832