Applying the MIMO BP Neural Network and Cloud-Based Monitoring of Thermal Behavior for High-Speed Motorized Spindle Units
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10254748" target="_blank" >RIV/61989100:27230/24:10254748 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001192996500001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001192996500001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/machines12030194" target="_blank" >10.3390/machines12030194</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Applying the MIMO BP Neural Network and Cloud-Based Monitoring of Thermal Behavior for High-Speed Motorized Spindle Units
Popis výsledku v původním jazyce
Understanding the temperature-working condition relationship is crucial for optimizing machining processes to ensure dimensional accuracy, surface finish quality, and overall spindle longevity. Monitoring and controlling spindle temperature through appropriate cooling systems and operational parameters are essential for efficient and reliable machining operations. This paper presents an in-depth analysis of the thermal equilibrium and deformation characteristics of a high-speed motorized spindle unit utilized in grinding machine tools. Through a series of thermal equilibrium experiments and meticulous data acquisition, the study investigates the nuanced influence of various working conditions, including spindle speeds, coolant types, and coolant flow rates, on spindle temperatures and thermal deformations. Leveraging the power of Artificial Neural Networks (ANNs), predictive models are meticulously developed to accurately forecast spindle behavior. Subsequently, the models are seamlessly transitioned to a cloud computing infrastructure to ensure remote accessibility and scalability, facilitating real-time monitoring and forecasting of spindle performance. The validity and reliability of the predictive models are rigorously assessed through comparison with experimental data, demonstrating excellent agreement and high accuracy in forecasting spindle thermal behavior. Furthermore, the study underscores the critical role of key working condition variables as precise predictors of spindle temperature and thermal deformation, emphasizing their significance in optimizing overall spindle efficiency and performance. This comprehensive analysis offers valuable insights and practical implications for enhancing spindle operation and advancing the field of grinding machine tools.
Název v anglickém jazyce
Applying the MIMO BP Neural Network and Cloud-Based Monitoring of Thermal Behavior for High-Speed Motorized Spindle Units
Popis výsledku anglicky
Understanding the temperature-working condition relationship is crucial for optimizing machining processes to ensure dimensional accuracy, surface finish quality, and overall spindle longevity. Monitoring and controlling spindle temperature through appropriate cooling systems and operational parameters are essential for efficient and reliable machining operations. This paper presents an in-depth analysis of the thermal equilibrium and deformation characteristics of a high-speed motorized spindle unit utilized in grinding machine tools. Through a series of thermal equilibrium experiments and meticulous data acquisition, the study investigates the nuanced influence of various working conditions, including spindle speeds, coolant types, and coolant flow rates, on spindle temperatures and thermal deformations. Leveraging the power of Artificial Neural Networks (ANNs), predictive models are meticulously developed to accurately forecast spindle behavior. Subsequently, the models are seamlessly transitioned to a cloud computing infrastructure to ensure remote accessibility and scalability, facilitating real-time monitoring and forecasting of spindle performance. The validity and reliability of the predictive models are rigorously assessed through comparison with experimental data, demonstrating excellent agreement and high accuracy in forecasting spindle thermal behavior. Furthermore, the study underscores the critical role of key working condition variables as precise predictors of spindle temperature and thermal deformation, emphasizing their significance in optimizing overall spindle efficiency and performance. This comprehensive analysis offers valuable insights and practical implications for enhancing spindle operation and advancing the field of grinding machine tools.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20300 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Machines
ISSN
2075-1702
e-ISSN
2075-1702
Svazek periodika
12
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
21
Strana od-do
"MAR 2024"
Kód UT WoS článku
001192996500001
EID výsledku v databázi Scopus
—