Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Application of Instrumented Indentation Test and Neural Networks to determine the constitutive model of in-situ austenitic stainless steel components

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10254952" target="_blank" >RIV/61989100:27230/24:10254952 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27240/24:10254952

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s43452-024-00922-9" target="_blank" >https://link.springer.com/article/10.1007/s43452-024-00922-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s43452-024-00922-9" target="_blank" >10.1007/s43452-024-00922-9</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Application of Instrumented Indentation Test and Neural Networks to determine the constitutive model of in-situ austenitic stainless steel components

  • Popis výsledku v původním jazyce

    Over the last few decades, Instrumented Indentation Test (IIT) has evolved into a versatile and convenient method for assessing the mechanical properties of metals. Unlike conventional hardness tests, IIT allows for incremental control of the indenter based on depth or force, enabling the measurement of not only hardness but also tensile properties, fracture toughness, and welding residual stress. Two crucial measures in IIT are the reaction force (F) exerted by the tested material on the indenter and the depth of the indenter (D). Evaluation of the mentioned properties from F-D curves typically involves complex analytical formulas that restricts the application of IIT to a limited group of materials. Moreover, for soft materials, such as austenitic stainless steel SS304L, with excessive pile-up/sink-in behaviors, conducting IIT becomes challenging due to improper evaluation of the imprint depth. In this work, we propose a systematic procedure for replacing complex analytical evaluations of IIT and expensive physical measurements. The proposed approach is based on the well-known potential of Neural Networks (NN) for data-driven modeling. We carried out physical IIT and tensile tests on samples prepared from SS304L. In addition, we generated multiple configurations of material properties and simulated the corresponding number of IITs using Finite Element Method (FEM). The information provided by the physical tests and simulated data from FEM are integrated into an NN, to produce a parametric mapping that can predict the parameters of a constitutive model based on any given F-D curve. Our physical and numerical experiments successfully demonstrate the potential of the proposed approach.

  • Název v anglickém jazyce

    Application of Instrumented Indentation Test and Neural Networks to determine the constitutive model of in-situ austenitic stainless steel components

  • Popis výsledku anglicky

    Over the last few decades, Instrumented Indentation Test (IIT) has evolved into a versatile and convenient method for assessing the mechanical properties of metals. Unlike conventional hardness tests, IIT allows for incremental control of the indenter based on depth or force, enabling the measurement of not only hardness but also tensile properties, fracture toughness, and welding residual stress. Two crucial measures in IIT are the reaction force (F) exerted by the tested material on the indenter and the depth of the indenter (D). Evaluation of the mentioned properties from F-D curves typically involves complex analytical formulas that restricts the application of IIT to a limited group of materials. Moreover, for soft materials, such as austenitic stainless steel SS304L, with excessive pile-up/sink-in behaviors, conducting IIT becomes challenging due to improper evaluation of the imprint depth. In this work, we propose a systematic procedure for replacing complex analytical evaluations of IIT and expensive physical measurements. The proposed approach is based on the well-known potential of Neural Networks (NN) for data-driven modeling. We carried out physical IIT and tensile tests on samples prepared from SS304L. In addition, we generated multiple configurations of material properties and simulated the corresponding number of IITs using Finite Element Method (FEM). The information provided by the physical tests and simulated data from FEM are integrated into an NN, to produce a parametric mapping that can predict the parameters of a constitutive model based on any given F-D curve. Our physical and numerical experiments successfully demonstrate the potential of the proposed approach.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20300 - Mechanical engineering

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Archives of Civil and Mechanical Engineering

  • ISSN

    1644-9665

  • e-ISSN

    2083-3318

  • Svazek periodika

    24

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    19

  • Strana od-do

    nestránkováno

  • Kód UT WoS článku

    001209743700001

  • EID výsledku v databázi Scopus