Application of Instrumented Indentation Test and Neural Networks to determine the constitutive model of in-situ austenitic stainless steel components
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10254952" target="_blank" >RIV/61989100:27230/24:10254952 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/24:10254952
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s43452-024-00922-9" target="_blank" >https://link.springer.com/article/10.1007/s43452-024-00922-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s43452-024-00922-9" target="_blank" >10.1007/s43452-024-00922-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of Instrumented Indentation Test and Neural Networks to determine the constitutive model of in-situ austenitic stainless steel components
Popis výsledku v původním jazyce
Over the last few decades, Instrumented Indentation Test (IIT) has evolved into a versatile and convenient method for assessing the mechanical properties of metals. Unlike conventional hardness tests, IIT allows for incremental control of the indenter based on depth or force, enabling the measurement of not only hardness but also tensile properties, fracture toughness, and welding residual stress. Two crucial measures in IIT are the reaction force (F) exerted by the tested material on the indenter and the depth of the indenter (D). Evaluation of the mentioned properties from F-D curves typically involves complex analytical formulas that restricts the application of IIT to a limited group of materials. Moreover, for soft materials, such as austenitic stainless steel SS304L, with excessive pile-up/sink-in behaviors, conducting IIT becomes challenging due to improper evaluation of the imprint depth. In this work, we propose a systematic procedure for replacing complex analytical evaluations of IIT and expensive physical measurements. The proposed approach is based on the well-known potential of Neural Networks (NN) for data-driven modeling. We carried out physical IIT and tensile tests on samples prepared from SS304L. In addition, we generated multiple configurations of material properties and simulated the corresponding number of IITs using Finite Element Method (FEM). The information provided by the physical tests and simulated data from FEM are integrated into an NN, to produce a parametric mapping that can predict the parameters of a constitutive model based on any given F-D curve. Our physical and numerical experiments successfully demonstrate the potential of the proposed approach.
Název v anglickém jazyce
Application of Instrumented Indentation Test and Neural Networks to determine the constitutive model of in-situ austenitic stainless steel components
Popis výsledku anglicky
Over the last few decades, Instrumented Indentation Test (IIT) has evolved into a versatile and convenient method for assessing the mechanical properties of metals. Unlike conventional hardness tests, IIT allows for incremental control of the indenter based on depth or force, enabling the measurement of not only hardness but also tensile properties, fracture toughness, and welding residual stress. Two crucial measures in IIT are the reaction force (F) exerted by the tested material on the indenter and the depth of the indenter (D). Evaluation of the mentioned properties from F-D curves typically involves complex analytical formulas that restricts the application of IIT to a limited group of materials. Moreover, for soft materials, such as austenitic stainless steel SS304L, with excessive pile-up/sink-in behaviors, conducting IIT becomes challenging due to improper evaluation of the imprint depth. In this work, we propose a systematic procedure for replacing complex analytical evaluations of IIT and expensive physical measurements. The proposed approach is based on the well-known potential of Neural Networks (NN) for data-driven modeling. We carried out physical IIT and tensile tests on samples prepared from SS304L. In addition, we generated multiple configurations of material properties and simulated the corresponding number of IITs using Finite Element Method (FEM). The information provided by the physical tests and simulated data from FEM are integrated into an NN, to produce a parametric mapping that can predict the parameters of a constitutive model based on any given F-D curve. Our physical and numerical experiments successfully demonstrate the potential of the proposed approach.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20300 - Mechanical engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Archives of Civil and Mechanical Engineering
ISSN
1644-9665
e-ISSN
2083-3318
Svazek periodika
24
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
nestránkováno
Kód UT WoS článku
001209743700001
EID výsledku v databázi Scopus
—