Tensile strength analysis of additively manufactured CM 247LC alloy specimen by employing machine learning classifiers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10255473" target="_blank" >RIV/61989100:27230/24:10255473 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0305744" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0305744</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0305744" target="_blank" >10.1371/journal.pone.0305744</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tensile strength analysis of additively manufactured CM 247LC alloy specimen by employing machine learning classifiers
Popis výsledku v původním jazyce
Using a cutting-edge net-shape manufacturing technique called Additive Layer Manufacturing (ALM), highly complex components that are not achievable with conventional wrought and cast methods can be produced. As a result, the aerospace sector is paying closer attention to using this technology to fabricate superalloys based on nickel to develop the holistic gas turbine. Because of this, there is an increasing need for the mechanical characterisation of such material. Conventional mechanical testing is hampered by the limited availability of material that has been processed, especially given the large number of process factors that need to be assessed. Thus, the present study focuses on manufacturing CM247LC Ni-based superalloy with exceptional mechanical characteristics by laser powder bed fusion (L-PBF). This study evaluates the effect of input process variables such as laser power, scan speed, hatch distance and volumetric energy density on the mechanical performance of the LPBF CM247LC superalloy. The maximum value of as-built tensile strength obtained in the study is 997.81 MPa. Plotting Pearson's heatmap and the Feature importance (F-test) was used in the data analysis to examine the impact of input parameters on tensile strength. The accuracy of the tensile strength data classification by machine learning algorithms, such as k-nearest neighbours, Naïve Baiyes, Support vector machine, XGBoost, AdaBoost, Decision tree, Random forest, and logistic regression algorithms, was 92.5%, 83.75%, 83%, 85%, 87.5%, 90%, 91.25%, and 77.5%, respectively.
Název v anglickém jazyce
Tensile strength analysis of additively manufactured CM 247LC alloy specimen by employing machine learning classifiers
Popis výsledku anglicky
Using a cutting-edge net-shape manufacturing technique called Additive Layer Manufacturing (ALM), highly complex components that are not achievable with conventional wrought and cast methods can be produced. As a result, the aerospace sector is paying closer attention to using this technology to fabricate superalloys based on nickel to develop the holistic gas turbine. Because of this, there is an increasing need for the mechanical characterisation of such material. Conventional mechanical testing is hampered by the limited availability of material that has been processed, especially given the large number of process factors that need to be assessed. Thus, the present study focuses on manufacturing CM247LC Ni-based superalloy with exceptional mechanical characteristics by laser powder bed fusion (L-PBF). This study evaluates the effect of input process variables such as laser power, scan speed, hatch distance and volumetric energy density on the mechanical performance of the LPBF CM247LC superalloy. The maximum value of as-built tensile strength obtained in the study is 997.81 MPa. Plotting Pearson's heatmap and the Feature importance (F-test) was used in the data analysis to examine the impact of input parameters on tensile strength. The accuracy of the tensile strength data classification by machine learning algorithms, such as k-nearest neighbours, Naïve Baiyes, Support vector machine, XGBoost, AdaBoost, Decision tree, Random forest, and logistic regression algorithms, was 92.5%, 83.75%, 83%, 85%, 87.5%, 90%, 91.25%, and 77.5%, respectively.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20600 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PLoS One
ISSN
1932-6203
e-ISSN
1932-6203
Svazek periodika
19
Číslo periodika v rámci svazku
7 July
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
6
Strana od-do
10-16
Kód UT WoS článku
001282593200042
EID výsledku v databázi Scopus
2-s2.0-85199902987