Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Tensile strength analysis of additively manufactured CM 247LC alloy specimen by employing machine learning classifiers

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10255473" target="_blank" >RIV/61989100:27230/24:10255473 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0305744" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0305744</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pone.0305744" target="_blank" >10.1371/journal.pone.0305744</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Tensile strength analysis of additively manufactured CM 247LC alloy specimen by employing machine learning classifiers

  • Popis výsledku v původním jazyce

    Using a cutting-edge net-shape manufacturing technique called Additive Layer Manufacturing (ALM), highly complex components that are not achievable with conventional wrought and cast methods can be produced. As a result, the aerospace sector is paying closer attention to using this technology to fabricate superalloys based on nickel to develop the holistic gas turbine. Because of this, there is an increasing need for the mechanical characterisation of such material. Conventional mechanical testing is hampered by the limited availability of material that has been processed, especially given the large number of process factors that need to be assessed. Thus, the present study focuses on manufacturing CM247LC Ni-based superalloy with exceptional mechanical characteristics by laser powder bed fusion (L-PBF). This study evaluates the effect of input process variables such as laser power, scan speed, hatch distance and volumetric energy density on the mechanical performance of the LPBF CM247LC superalloy. The maximum value of as-built tensile strength obtained in the study is 997.81 MPa. Plotting Pearson&apos;s heatmap and the Feature importance (F-test) was used in the data analysis to examine the impact of input parameters on tensile strength. The accuracy of the tensile strength data classification by machine learning algorithms, such as k-nearest neighbours, Naïve Baiyes, Support vector machine, XGBoost, AdaBoost, Decision tree, Random forest, and logistic regression algorithms, was 92.5%, 83.75%, 83%, 85%, 87.5%, 90%, 91.25%, and 77.5%, respectively.

  • Název v anglickém jazyce

    Tensile strength analysis of additively manufactured CM 247LC alloy specimen by employing machine learning classifiers

  • Popis výsledku anglicky

    Using a cutting-edge net-shape manufacturing technique called Additive Layer Manufacturing (ALM), highly complex components that are not achievable with conventional wrought and cast methods can be produced. As a result, the aerospace sector is paying closer attention to using this technology to fabricate superalloys based on nickel to develop the holistic gas turbine. Because of this, there is an increasing need for the mechanical characterisation of such material. Conventional mechanical testing is hampered by the limited availability of material that has been processed, especially given the large number of process factors that need to be assessed. Thus, the present study focuses on manufacturing CM247LC Ni-based superalloy with exceptional mechanical characteristics by laser powder bed fusion (L-PBF). This study evaluates the effect of input process variables such as laser power, scan speed, hatch distance and volumetric energy density on the mechanical performance of the LPBF CM247LC superalloy. The maximum value of as-built tensile strength obtained in the study is 997.81 MPa. Plotting Pearson&apos;s heatmap and the Feature importance (F-test) was used in the data analysis to examine the impact of input parameters on tensile strength. The accuracy of the tensile strength data classification by machine learning algorithms, such as k-nearest neighbours, Naïve Baiyes, Support vector machine, XGBoost, AdaBoost, Decision tree, Random forest, and logistic regression algorithms, was 92.5%, 83.75%, 83%, 85%, 87.5%, 90%, 91.25%, and 77.5%, respectively.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20600 - Medical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    PLoS One

  • ISSN

    1932-6203

  • e-ISSN

    1932-6203

  • Svazek periodika

    19

  • Číslo periodika v rámci svazku

    7 July

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    6

  • Strana od-do

    10-16

  • Kód UT WoS článku

    001282593200042

  • EID výsledku v databázi Scopus

    2-s2.0-85199902987