Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Achieving sustainable machining of titanium grade 3 alloy through optimization using grey relational analysis (GRA)

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10255768" target="_blank" >RIV/61989100:27230/24:10255768 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001253622300001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001253622300001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.rineng.2024.102355" target="_blank" >10.1016/j.rineng.2024.102355</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Achieving sustainable machining of titanium grade 3 alloy through optimization using grey relational analysis (GRA)

  • Popis výsledku v původním jazyce

    In the contemporary landscape of advanced manufacturing, there is an increasing demand for machining processes that excel in both quality and energy efficiency. One of the prime objectives is to excel in an era of machining practices that are environmentally conscious and economically sustainable. This research addresses this challenge by undertaking a comprehensive exploration of multi-objective optimization, specifically tailored to address the machining challenges presented by Titanium Grade 3 alloy. A robust Taguchi-Grey integrated approach was adopted with research aim to strike an optimum balance among specific cutting energy, tool wear, surface finish, and material removal rate. The impact of machining inputs i.e., feed rate, cutting speed, and depth of cut were analyzed. Best machining setting was identified using grey relational analysis. Feed rate was identified as the most influential member affecting grey relational grade having contribution ratio of 73.95%. Furthermore, surface plots and contour plots were developed for aid of machinists on job floor in selection of best cutting conditions. Harnessing the usefulness of response surface optimization, the machinability was further enhanced by 9% reduction in specific cutting energy and 7% improvement in tool wear. However, it is imperative to acknowledge the trade-offs as a result of MOO; surface roughness increases by 12%, potentially necessitating additional post-processing steps.

  • Název v anglickém jazyce

    Achieving sustainable machining of titanium grade 3 alloy through optimization using grey relational analysis (GRA)

  • Popis výsledku anglicky

    In the contemporary landscape of advanced manufacturing, there is an increasing demand for machining processes that excel in both quality and energy efficiency. One of the prime objectives is to excel in an era of machining practices that are environmentally conscious and economically sustainable. This research addresses this challenge by undertaking a comprehensive exploration of multi-objective optimization, specifically tailored to address the machining challenges presented by Titanium Grade 3 alloy. A robust Taguchi-Grey integrated approach was adopted with research aim to strike an optimum balance among specific cutting energy, tool wear, surface finish, and material removal rate. The impact of machining inputs i.e., feed rate, cutting speed, and depth of cut were analyzed. Best machining setting was identified using grey relational analysis. Feed rate was identified as the most influential member affecting grey relational grade having contribution ratio of 73.95%. Furthermore, surface plots and contour plots were developed for aid of machinists on job floor in selection of best cutting conditions. Harnessing the usefulness of response surface optimization, the machinability was further enhanced by 9% reduction in specific cutting energy and 7% improvement in tool wear. However, it is imperative to acknowledge the trade-offs as a result of MOO; surface roughness increases by 12%, potentially necessitating additional post-processing steps.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20301 - Mechanical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Results in Engineering

  • ISSN

    2590-1230

  • e-ISSN

  • Svazek periodika

    23

  • Číslo periodika v rámci svazku

    23

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

  • Kód UT WoS článku

    001253622300001

  • EID výsledku v databázi Scopus

    2-s2.0-85195518732