Design and development of thermo-electromagnetic system for spinodal decompositions of FeCrCo alloys
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10255776" target="_blank" >RIV/61989100:27230/24:10255776 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001286837500001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001286837500001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmrt.2024.07.161" target="_blank" >10.1016/j.jmrt.2024.07.161</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Design and development of thermo-electromagnetic system for spinodal decompositions of FeCrCo alloys
Popis výsledku v původním jazyce
Permanent magnets are essential components of electromechanical devices. Majority of magnets are used in permanent magnet motors that have extensive application in relation to energy efficiency and sustainability like electric vehicles. This research is aimed for efficient manufacturing of FeCrCo permanent magnets. Electromagnets could be utilized for the generation of continuous magnetic field to use in number of manufacturing processes. A two-pole electromagnet, comprising of two solenoids each having 2200 turns of copper wire, was developed. The system was designed to produce magnetic field up to 10 kilo Gauss for spinodal decomposition of FeCrCo alloy samples under thermomagnetic treatment process. Being rare earth free alloys, FeCrCo magnet is gaining research focus as an alternative magnetic alloy for advanced applications. The electromagnetic system design was refined and confirmed by using the Finite Element Method. The experimental values, of magnetic field generated by the two-pole electromagnet setup, were well close to the simulation results. The magnetizing setup was utilized to treat the FeCrCo magnetic alloy samples simultaneously at high temperature (700 oC) and magnetic field (7 kilo Gauss). This thermo-magnetic setup helped to improve the metallurgical structures of FeCrCo to grow and develop more efficiently. Treated samples of FeCrCo alloy demonstrated enhanced magnetic properties due to effective spinodal decomposition. The improvement in magnetic properties was attributed to the elimination of retained alpha phase and formation of more alpha-1 phase. (C) 2024 The Authors
Název v anglickém jazyce
Design and development of thermo-electromagnetic system for spinodal decompositions of FeCrCo alloys
Popis výsledku anglicky
Permanent magnets are essential components of electromechanical devices. Majority of magnets are used in permanent magnet motors that have extensive application in relation to energy efficiency and sustainability like electric vehicles. This research is aimed for efficient manufacturing of FeCrCo permanent magnets. Electromagnets could be utilized for the generation of continuous magnetic field to use in number of manufacturing processes. A two-pole electromagnet, comprising of two solenoids each having 2200 turns of copper wire, was developed. The system was designed to produce magnetic field up to 10 kilo Gauss for spinodal decomposition of FeCrCo alloy samples under thermomagnetic treatment process. Being rare earth free alloys, FeCrCo magnet is gaining research focus as an alternative magnetic alloy for advanced applications. The electromagnetic system design was refined and confirmed by using the Finite Element Method. The experimental values, of magnetic field generated by the two-pole electromagnet setup, were well close to the simulation results. The magnetizing setup was utilized to treat the FeCrCo magnetic alloy samples simultaneously at high temperature (700 oC) and magnetic field (7 kilo Gauss). This thermo-magnetic setup helped to improve the metallurgical structures of FeCrCo to grow and develop more efficiently. Treated samples of FeCrCo alloy demonstrated enhanced magnetic properties due to effective spinodal decomposition. The improvement in magnetic properties was attributed to the elimination of retained alpha phase and formation of more alpha-1 phase. (C) 2024 The Authors
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Materials Research and Technology
ISSN
2238-7854
e-ISSN
2214-0697
Svazek periodika
32
Číslo periodika v rámci svazku
32
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
1000-1010
Kód UT WoS článku
001286837500001
EID výsledku v databázi Scopus
2-s2.0-85200147825