Real-time prediction and classification of erosion crater characteristics in pulsating water jet machining of different materials with machine learning models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10255780" target="_blank" >RIV/61989100:27230/24:10255780 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68145535:_____/24:00585085
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s43452-024-00908-7" target="_blank" >https://link.springer.com/article/10.1007/s43452-024-00908-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s43452-024-00908-7" target="_blank" >10.1007/s43452-024-00908-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Real-time prediction and classification of erosion crater characteristics in pulsating water jet machining of different materials with machine learning models
Popis výsledku v původním jazyce
Erosion caused by water droplets is constantly in flux for practical and fundamental reasons. Due to the high accumulation of knowledge in this area, it is already possible to predict erosion development in practical scenarios. Therefore, the purpose of this study is to use machine learning models to predict the erosion action caused by the multiple impacts of water droplets on ductile materials. The droplets were generated by using an ultrasonically excited pulsating water jet at pressures of 20 and 30 MPa for individual erosion time intervals from 1 to 20 s. The study was performed on two materials, i.e. AW-6060 aluminium alloy and AISI 304 stainless steel, to understand the role of different materials in droplet erosion. Erosion depth, width and volume removal were considered as responses with which to characterise the erosion evolution. The actual experimental response data were measured using a non-contact optical method, which was then used to train the prediction models. A high prediction accuracy between the predicted and observed data was obtained. With this approach, the erosion resistance of the material can be predicted, and, furthermore, the prediction of the progress from the incubation erosion stage to the terminal erosion stage can also be obtained.
Název v anglickém jazyce
Real-time prediction and classification of erosion crater characteristics in pulsating water jet machining of different materials with machine learning models
Popis výsledku anglicky
Erosion caused by water droplets is constantly in flux for practical and fundamental reasons. Due to the high accumulation of knowledge in this area, it is already possible to predict erosion development in practical scenarios. Therefore, the purpose of this study is to use machine learning models to predict the erosion action caused by the multiple impacts of water droplets on ductile materials. The droplets were generated by using an ultrasonically excited pulsating water jet at pressures of 20 and 30 MPa for individual erosion time intervals from 1 to 20 s. The study was performed on two materials, i.e. AW-6060 aluminium alloy and AISI 304 stainless steel, to understand the role of different materials in droplet erosion. Erosion depth, width and volume removal were considered as responses with which to characterise the erosion evolution. The actual experimental response data were measured using a non-contact optical method, which was then used to train the prediction models. A high prediction accuracy between the predicted and observed data was obtained. With this approach, the erosion resistance of the material can be predicted, and, furthermore, the prediction of the progress from the incubation erosion stage to the terminal erosion stage can also be obtained.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-05372S" target="_blank" >GA23-05372S: Povrchová a podpovrchová eroze způsobená vícenásobným dopadem kapek</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Archives of Civil and Mechanical Engineering
ISSN
1644-9665
e-ISSN
2083-3318
Svazek periodika
24
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
nestránkováno
Kód UT WoS článku
001195112100002
EID výsledku v databázi Scopus
—