Enhancing surface quality and tool life in SLM-machined components with Dual-MQL approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10255781" target="_blank" >RIV/61989100:27230/24:10255781 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2238785424014947" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2238785424014947</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmrt.2024.06.183" target="_blank" >10.1016/j.jmrt.2024.06.183</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhancing surface quality and tool life in SLM-machined components with Dual-MQL approach
Popis výsledku v původním jazyce
Selective laser melting (SLM) can produce complex metal components with high densities, thereby surpassing the limitations of traditional machining methods. However, achieving accurate dimensions, geometries, and acceptable surface states in parts fabricated through SLM remains a concern as they often fall short compared to traditionally machined components. As a solution, a hybrid additive-subtractive manufacturing (HASM) method was developed to effectively utilize the advantages of both techniques. In this study, SLM-made 316 L stainless steel was machined under distinct cooling conditions to investigate the effects of roughness and tool wear. After a thorough investigation, the dual-MQL strategy was evaluated and compared with dry and MQL cutting strategies. The findings showed that the dual-MQL condition led to a significant reduction in flank wear by 54-56% and 29-34%, respectively, associated with dry and MQL cutting techniques, making it a highly promising key for machining SLM-made steel components. Machine learning techniques are potential tools for prediction and classification capabilities in machining processes. For milling SLM-made 316 L SS, multilayer perceptron (MLP) proved to be the most effective prediction model and for classification MLP and Random forest performed better.
Název v anglickém jazyce
Enhancing surface quality and tool life in SLM-machined components with Dual-MQL approach
Popis výsledku anglicky
Selective laser melting (SLM) can produce complex metal components with high densities, thereby surpassing the limitations of traditional machining methods. However, achieving accurate dimensions, geometries, and acceptable surface states in parts fabricated through SLM remains a concern as they often fall short compared to traditionally machined components. As a solution, a hybrid additive-subtractive manufacturing (HASM) method was developed to effectively utilize the advantages of both techniques. In this study, SLM-made 316 L stainless steel was machined under distinct cooling conditions to investigate the effects of roughness and tool wear. After a thorough investigation, the dual-MQL strategy was evaluated and compared with dry and MQL cutting strategies. The findings showed that the dual-MQL condition led to a significant reduction in flank wear by 54-56% and 29-34%, respectively, associated with dry and MQL cutting techniques, making it a highly promising key for machining SLM-made steel components. Machine learning techniques are potential tools for prediction and classification capabilities in machining processes. For milling SLM-made 316 L SS, multilayer perceptron (MLP) proved to be the most effective prediction model and for classification MLP and Random forest performed better.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Materials Research and Technology
ISSN
2238-7854
e-ISSN
2214-0697
Svazek periodika
31
Číslo periodika v rámci svazku
July–August 2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
1837-1852
Kód UT WoS článku
001262824300001
EID výsledku v databázi Scopus
—