Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Additive manufacturing of Titanium alloy for aerospace applications: Insights into the process, microstructure, and mechanical properties

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10255821" target="_blank" >RIV/61989100:27230/24:10255821 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2352940724004268?casa_token=q_7iT2aQphcAAAAA:teVnNRKH7-tkN-IlgPWfbmxRtild70cyOEjRr-JYZqywaqziee-OZK_AmYjKvpjk0pZ8n2yw" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352940724004268?casa_token=q_7iT2aQphcAAAAA:teVnNRKH7-tkN-IlgPWfbmxRtild70cyOEjRr-JYZqywaqziee-OZK_AmYjKvpjk0pZ8n2yw</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apmt.2024.102481" target="_blank" >10.1016/j.apmt.2024.102481</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Additive manufacturing of Titanium alloy for aerospace applications: Insights into the process, microstructure, and mechanical properties

  • Popis výsledku v původním jazyce

    The aerospace sector has been transformed by recent advances in titanium alloy additive manufacturing for aerospace components, which introduces novel manufacturing techniques and offers special benefits in design flexibility, shortened lead times, and cost-effectiveness. Titanium alloys have excellent mechanical properties in lightweight applications but are not feasible in terms of material efficiency during conventional manufacturing. The conventional machining of titanium alloys for aerospace applications faced significant challenges such as tool wear during machining, high buy-to-fly ratio making it economically not feasible and difficulty in fabricating complex geometries Metal additive manufacturing has appeared as a better candidate for manufacturing aircraft parts with a better buy-to-fly ratio and proper material efficiency in an economical way. The previous studies on additive manufacturing of titanium alloys have focussed on overcoming these limitations and enabling the efficient utilization of titanium alloys for complex aerospace components The present study aims to review the additive manufacturing to explore the intricate relationship of the process parameters with the microstructural changes and mechanical performance. It includes the effect of process parameters on the fatigue behaviour, tensile strength, residual stresses, corrosion resistance and microstructural evolution of additively manufactured components. The integration of the fourth industrial revolution (4IR) with additive manufacturing such as smart manufacturing, digital twin, and automated processes can enhance the efficiency and quality of the titanium alloy components. This implementation enables tailored design, microstructures, mechanical properties and rapid prototyping as per the requirements and specifications of the aerospace industry. Though additive-manufactured titanium alloy has made substantial advancements in the aerospace industry, further investigation is required to fully utilize its potential. The review highlights the potential to transform the aerospace sector by providing lightweight, high-performance components through advancements in process control and material performance and to fully utilise additively manufactured titanium alloy in aerospace applications.

  • Název v anglickém jazyce

    Additive manufacturing of Titanium alloy for aerospace applications: Insights into the process, microstructure, and mechanical properties

  • Popis výsledku anglicky

    The aerospace sector has been transformed by recent advances in titanium alloy additive manufacturing for aerospace components, which introduces novel manufacturing techniques and offers special benefits in design flexibility, shortened lead times, and cost-effectiveness. Titanium alloys have excellent mechanical properties in lightweight applications but are not feasible in terms of material efficiency during conventional manufacturing. The conventional machining of titanium alloys for aerospace applications faced significant challenges such as tool wear during machining, high buy-to-fly ratio making it economically not feasible and difficulty in fabricating complex geometries Metal additive manufacturing has appeared as a better candidate for manufacturing aircraft parts with a better buy-to-fly ratio and proper material efficiency in an economical way. The previous studies on additive manufacturing of titanium alloys have focussed on overcoming these limitations and enabling the efficient utilization of titanium alloys for complex aerospace components The present study aims to review the additive manufacturing to explore the intricate relationship of the process parameters with the microstructural changes and mechanical performance. It includes the effect of process parameters on the fatigue behaviour, tensile strength, residual stresses, corrosion resistance and microstructural evolution of additively manufactured components. The integration of the fourth industrial revolution (4IR) with additive manufacturing such as smart manufacturing, digital twin, and automated processes can enhance the efficiency and quality of the titanium alloy components. This implementation enables tailored design, microstructures, mechanical properties and rapid prototyping as per the requirements and specifications of the aerospace industry. Though additive-manufactured titanium alloy has made substantial advancements in the aerospace industry, further investigation is required to fully utilize its potential. The review highlights the potential to transform the aerospace sector by providing lightweight, high-performance components through advancements in process control and material performance and to fully utilise additively manufactured titanium alloy in aerospace applications.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20301 - Mechanical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Materials Today

  • ISSN

    2352-9407

  • e-ISSN

    2352-9407

  • Svazek periodika

    41

  • Číslo periodika v rámci svazku

    December 2024

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    20

  • Strana od-do

    102481

  • Kód UT WoS článku

    001344431700001

  • EID výsledku v databázi Scopus

    2-s2.0-85207096737