COMPARISON OF CHOSEN METAHEURISTIC ALGORITHMS FOR THE OPTIMIZATION OF THE ABRASIVE WATER JET TREATMENT PROCESS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10256515" target="_blank" >RIV/61989100:27230/24:10256515 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mmscience.eu/journal/issues/november-2024/articles/comparison-of-chosen-metaheuristic-algorithms-for-the-optimization-of-the-abrasive-water-jet-treatment-process" target="_blank" >https://www.mmscience.eu/journal/issues/november-2024/articles/comparison-of-chosen-metaheuristic-algorithms-for-the-optimization-of-the-abrasive-water-jet-treatment-process</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17973/MMSJ.2024_11_2024098" target="_blank" >10.17973/MMSJ.2024_11_2024098</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
COMPARISON OF CHOSEN METAHEURISTIC ALGORITHMS FOR THE OPTIMIZATION OF THE ABRASIVE WATER JET TREATMENT PROCESS
Popis výsledku v původním jazyce
Abrasive waterjet machining (AWJ) is characterized by significantly better efficiency and better precision for difficult-to-machine materials than conventional machining technologies. However, the larger number of control parameters characterizing this process needs optimization. The study compares the performance of three nature-inspired metaheuristic algorithms, ALO, GWO, and MFO for optimizing the abrasive water jet (AWJ) treatment. The Response Surface Methodology was used to determine the cost function. The study evaluates the convergence and computational cost of the algorithms to aid future developments in this field. The study aims to maximize the cutting thickness by predicting the optimal water-abrasive cutting parameters (nozzle diameter, abrasive concentration, feed speed). For all three algorithms, the maximum cutting depth was determined to be 87.47 mm, which differs only less than 3% from the actual value. The results highlight the potential of ant-lion optimization (ALO), grey wolf optimizer (GWO), and (MFO) moth-flame optimization algorithms for resolving optimization issues in AWJ machining.
Název v anglickém jazyce
COMPARISON OF CHOSEN METAHEURISTIC ALGORITHMS FOR THE OPTIMIZATION OF THE ABRASIVE WATER JET TREATMENT PROCESS
Popis výsledku anglicky
Abrasive waterjet machining (AWJ) is characterized by significantly better efficiency and better precision for difficult-to-machine materials than conventional machining technologies. However, the larger number of control parameters characterizing this process needs optimization. The study compares the performance of three nature-inspired metaheuristic algorithms, ALO, GWO, and MFO for optimizing the abrasive water jet (AWJ) treatment. The Response Surface Methodology was used to determine the cost function. The study evaluates the convergence and computational cost of the algorithms to aid future developments in this field. The study aims to maximize the cutting thickness by predicting the optimal water-abrasive cutting parameters (nozzle diameter, abrasive concentration, feed speed). For all three algorithms, the maximum cutting depth was determined to be 87.47 mm, which differs only less than 3% from the actual value. The results highlight the potential of ant-lion optimization (ALO), grey wolf optimizer (GWO), and (MFO) moth-flame optimization algorithms for resolving optimization issues in AWJ machining.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MM Science Journal
ISSN
1803-1269
e-ISSN
1805-0476
Svazek periodika
2024
Číslo periodika v rámci svazku
November 2024
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
9
Strana od-do
7678-7686
Kód UT WoS článku
001350510400001
EID výsledku v databázi Scopus
—