Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Current Applications of Machine Learning in Additive Manufacturing: A Review on Challenges and Future Trends

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10256517" target="_blank" >RIV/61989100:27230/24:10256517 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s11831-024-10215-2#citeas" target="_blank" >https://link.springer.com/article/10.1007/s11831-024-10215-2#citeas</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11831-024-10215-2" target="_blank" >10.1007/s11831-024-10215-2</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Current Applications of Machine Learning in Additive Manufacturing: A Review on Challenges and Future Trends

  • Popis výsledku v původním jazyce

    The article provides a detailed review of the utilisation of machine learning (ML) in various domains of additive manufacturing (AM) and highlights its potential to address key challenges in the industry. The article acknowledges the hurdles to widespread adoption of AM, including barriers in design for AM (DfAM), limited materials selection, processing defects, and inconsistent product quality. ML is increasingly being integrated into AM workflows, offering significant potential for classification, regression, and clustering to address the AM challenges. It can be used to generate new high-performance metamaterials and optimize topological designs, improving the efficacy and usefulness of the design process. It also optimizes process parameters, monitors powder spreading, and detects in-process defects, enhancing the overall quality and reliability of the manufacturing process. ML aids in streamlining the production processes and ensuring consistent product quality. There&apos;s recognition of the importance of data security in AM, with ML techniques potentially posing risks of data breaches if not properly managed. Therefore, a synergistic approach where ML assists in identifying critical conditions and human operators take action is likely the most effective way to ensure both efficiency and accuracy in AM processes. The paper summarises the key results from the literature and discusses some significant applications of machine learning in AM. It emphasizes the potential of ML to drive innovation and address critical challenges in the AM industry. Overall, the article underscores the significance of ML in advancing AM technology and its potential to overcome existing barriers to adoption, making way for broader implementation of AM in various industries. (C) The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2024.

  • Název v anglickém jazyce

    Current Applications of Machine Learning in Additive Manufacturing: A Review on Challenges and Future Trends

  • Popis výsledku anglicky

    The article provides a detailed review of the utilisation of machine learning (ML) in various domains of additive manufacturing (AM) and highlights its potential to address key challenges in the industry. The article acknowledges the hurdles to widespread adoption of AM, including barriers in design for AM (DfAM), limited materials selection, processing defects, and inconsistent product quality. ML is increasingly being integrated into AM workflows, offering significant potential for classification, regression, and clustering to address the AM challenges. It can be used to generate new high-performance metamaterials and optimize topological designs, improving the efficacy and usefulness of the design process. It also optimizes process parameters, monitors powder spreading, and detects in-process defects, enhancing the overall quality and reliability of the manufacturing process. ML aids in streamlining the production processes and ensuring consistent product quality. There&apos;s recognition of the importance of data security in AM, with ML techniques potentially posing risks of data breaches if not properly managed. Therefore, a synergistic approach where ML assists in identifying critical conditions and human operators take action is likely the most effective way to ensure both efficiency and accuracy in AM processes. The paper summarises the key results from the literature and discusses some significant applications of machine learning in AM. It emphasizes the potential of ML to drive innovation and address critical challenges in the AM industry. Overall, the article underscores the significance of ML in advancing AM technology and its potential to overcome existing barriers to adoption, making way for broader implementation of AM in various industries. (C) The Author(s) under exclusive licence to International Center for Numerical Methods in Engineering (CIMNE) 2024.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20301 - Mechanical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Archives of Computational Methods in Engineering

  • ISSN

    1134-3060

  • e-ISSN

  • Svazek periodika

    2024

  • Číslo periodika v rámci svazku

    December

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    34

  • Strana od-do

  • Kód UT WoS článku

    001383454000001

  • EID výsledku v databázi Scopus

    2-s2.0-85213342730