On distributed bisimilarity over Basic Parallel Processes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F05%3A00012177" target="_blank" >RIV/61989100:27240/05:00012177 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On distributed bisimilarity over Basic Parallel Processes
Popis výsledku v původním jazyce
Distributed bisimilarity is one of non-interleaving equivalences studied on concurrent systems; it refines the classical bisimilarity by taking also the spatial distribution of (sub)components into account. In the area of verification of infinite-state systems, one of the simplest (most basic) classes in the class of Basic Parallel Processes (BPP); here distributed is known to coincide with many other non-interleaving equivalences. While the classical (interleaving) bisimilarity on BPP is known to be PSPACE-complete, for distributed bisimilarity a polynomial time algorithm was shown by Lasota (2003). Lasota's algorithm is technically a bit complicated, and uses the algorithm by Hirshfeld, Jerrum, Moller (1996) for deciding bisimilarity on normed BPP asa subroutine. Lasota has not estimated the degree of the polynomial for his algorithm, and it is not an easy task to do. In this paper we show a direct and conceptually simpler algorithm, which allows to bound the complexity by O(n^3) (w
Název v anglickém jazyce
On distributed bisimilarity over Basic Parallel Processes
Popis výsledku anglicky
Distributed bisimilarity is one of non-interleaving equivalences studied on concurrent systems; it refines the classical bisimilarity by taking also the spatial distribution of (sub)components into account. In the area of verification of infinite-state systems, one of the simplest (most basic) classes in the class of Basic Parallel Processes (BPP); here distributed is known to coincide with many other non-interleaving equivalences. While the classical (interleaving) bisimilarity on BPP is known to be PSPACE-complete, for distributed bisimilarity a polynomial time algorithm was shown by Lasota (2003). Lasota's algorithm is technically a bit complicated, and uses the algorithm by Hirshfeld, Jerrum, Moller (1996) for deciding bisimilarity on normed BPP asa subroutine. Lasota has not estimated the degree of the polynomial for his algorithm, and it is not an easy task to do. In this paper we show a direct and conceptually simpler algorithm, which allows to bound the complexity by O(n^3) (w
Klasifikace
Druh
A - Audiovizuální tvorba
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F03%2F1161" target="_blank" >GA201/03/1161: Verifikace nekonečně stavových systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2005
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
—
Místo vydání
Edinburgh
Název nakladatele resp. objednatele
University of Edinburgh
Verze
—
Identifikační číslo nosiče
—