PERFORMANCE COMPARISON OF SIX EFFICIENT PURE HEURISTICS FOR SCHEDULING META-TASKS ON HETEROGENEOUS DISTRIBUTED ENVIRONMENTS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F09%3A00020941" target="_blank" >RIV/61989100:27240/09:00020941 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
PERFORMANCE COMPARISON OF SIX EFFICIENT PURE HEURISTICS FOR SCHEDULING META-TASKS ON HETEROGENEOUS DISTRIBUTED ENVIRONMENTS
Popis výsledku v původním jazyce
Scheduling is one of the core steps to efficiently exploit the capabilities of heterogeneous, distributed computing systems and represents an NP-complete problem. Therefore, using meta heuristic algorithms is a suitable approach in order to cope with itsdifficulty. In many meta-heuristic. algorithms, generating individuals in the initial stop has an important effect oil the convergence behavior of the algorithm and final solutions. Using some pure heuristics for generating one or more near-optimal individuals in the initial step can improve the final solutions obtained by meta-heuristic algorithms. Pure heuristics may be used solitary for generating schedules in many real-world situations in which using the meta-heuristic methods are too difficult orinappropriate. Different criteria can be used for evaluating the efficiency of scheduling algorithms, the most important of which are makespan and flowtime. In this paper, we propose an efficient pure heuristic method and then we compare
Název v anglickém jazyce
PERFORMANCE COMPARISON OF SIX EFFICIENT PURE HEURISTICS FOR SCHEDULING META-TASKS ON HETEROGENEOUS DISTRIBUTED ENVIRONMENTS
Popis výsledku anglicky
Scheduling is one of the core steps to efficiently exploit the capabilities of heterogeneous, distributed computing systems and represents an NP-complete problem. Therefore, using meta heuristic algorithms is a suitable approach in order to cope with itsdifficulty. In many meta-heuristic. algorithms, generating individuals in the initial stop has an important effect oil the convergence behavior of the algorithm and final solutions. Using some pure heuristics for generating one or more near-optimal individuals in the initial step can improve the final solutions obtained by meta-heuristic algorithms. Pure heuristics may be used solitary for generating schedules in many real-world situations in which using the meta-heuristic methods are too difficult orinappropriate. Different criteria can be used for evaluating the efficiency of scheduling algorithms, the most important of which are makespan and flowtime. In this paper, we propose an efficient pure heuristic method and then we compare
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA102%2F09%2F1494" target="_blank" >GA102/09/1494: Nové metody přenosu dat založené na turbo kódech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
NEURAL NETWORK WORLD
ISSN
1210-0552
e-ISSN
—
Svazek periodika
6
Číslo periodika v rámci svazku
19
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
15
Strana od-do
—
Kód UT WoS článku
000273729800003
EID výsledku v databázi Scopus
—