Vector Model Improvement Using Suffix Trees
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F09%3A00021025" target="_blank" >RIV/61989100:27240/09:00021025 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Vector Model Improvement Using Suffix Trees
Popis výsledku v původním jazyce
There are many ways how to search for documents in document collections. These methods take advantage of Boolean, vector, probabilistic and other models for the representation of documents, queries, rules and procedures which can determine correspondencebetween user requests and documents. Each of these models have several restrictions. These restrictions do not allow a user to find all relevant documents. There are many irrelevant documents among returned ones by the system and some relevant documentsmissing at all. In the article there is a new method suggested which uses suffix trees for the vector query improvement. This method treats the documents as a set of phrases (sentences) not just as a set of words. The sentence has a specific semantic meaning (words in the sentence are ordered). This is the advantage in comparison with methods which treat document just like a bag of words.
Název v anglickém jazyce
Vector Model Improvement Using Suffix Trees
Popis výsledku anglicky
There are many ways how to search for documents in document collections. These methods take advantage of Boolean, vector, probabilistic and other models for the representation of documents, queries, rules and procedures which can determine correspondencebetween user requests and documents. Each of these models have several restrictions. These restrictions do not allow a user to find all relevant documents. There are many irrelevant documents among returned ones by the system and some relevant documentsmissing at all. In the article there is a new method suggested which uses suffix trees for the vector query improvement. This method treats the documents as a set of phrases (sentences) not just as a set of words. The sentence has a specific semantic meaning (words in the sentence are ordered). This is the advantage in comparison with methods which treat document just like a bag of words.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F09%2F0990" target="_blank" >GA201/09/0990: Zpracování XML dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Computational Intelligence Research
ISSN
0974-1259
e-ISSN
—
Svazek periodika
5
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—