Scheduling Meta-tasks in Distributed Heterogeneous Computing Systems: A Meta-Heuristic Particle Swarm Optimization Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F09%3A86075646" target="_blank" >RIV/61989100:27240/09:86075646 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Scheduling Meta-tasks in Distributed Heterogeneous Computing Systems: A Meta-Heuristic Particle Swarm Optimization Approach
Popis výsledku v původním jazyce
Scheduling is a key problem in distributed heterogeneous computing systems in order to benefit from the large computing capacity of such systems and is an NP-complete problem. In this paper, we present a Particle Swarm Optimization (PSO) approach for this problem. PSO is a population-based search algorithm based on the simulation of the social behavior of bird flocking and fish schooling. Particles fly in problem search space to find optimal or near-optimal solutions. The scheduler aims at minimizing make-span, which is the time when finishes the latest task. Experimental studies show that the proposed method is more efficient and surpasses those of reported PSO and GA approaches for this problem.
Název v anglickém jazyce
Scheduling Meta-tasks in Distributed Heterogeneous Computing Systems: A Meta-Heuristic Particle Swarm Optimization Approach
Popis výsledku anglicky
Scheduling is a key problem in distributed heterogeneous computing systems in order to benefit from the large computing capacity of such systems and is an NP-complete problem. In this paper, we present a Particle Swarm Optimization (PSO) approach for this problem. PSO is a population-based search algorithm based on the simulation of the social behavior of bird flocking and fish schooling. Particles fly in problem search space to find optimal or near-optimal solutions. The scheduler aims at minimizing make-span, which is the time when finishes the latest task. Experimental studies show that the proposed method is more efficient and surpasses those of reported PSO and GA approaches for this problem.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA102%2F09%2F1494" target="_blank" >GA102/09/1494: Nové metody přenosu dat založené na turbo kódech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Ninth International Conference on Hybrid Intelligent Systems, 2009. HIS 09
ISBN
978-0-7695-3745-0
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
—
Název nakladatele
IEEE Computer Society
Místo vydání
Los Alamitos, California
Místo konání akce
Čína
Datum konání akce
12. 8. 2009
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000281999600082