Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Scheduling Meta-tasks in Distributed Heterogeneous Computing Systems: A Meta-Heuristic Particle Swarm Optimization Approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F09%3A86075646" target="_blank" >RIV/61989100:27240/09:86075646 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Scheduling Meta-tasks in Distributed Heterogeneous Computing Systems: A Meta-Heuristic Particle Swarm Optimization Approach

  • Popis výsledku v původním jazyce

    Scheduling is a key problem in distributed heterogeneous computing systems in order to benefit from the large computing capacity of such systems and is an NP-complete problem. In this paper, we present a Particle Swarm Optimization (PSO) approach for this problem. PSO is a population-based search algorithm based on the simulation of the social behavior of bird flocking and fish schooling. Particles fly in problem search space to find optimal or near-optimal solutions. The scheduler aims at minimizing make-span, which is the time when finishes the latest task. Experimental studies show that the proposed method is more efficient and surpasses those of reported PSO and GA approaches for this problem.

  • Název v anglickém jazyce

    Scheduling Meta-tasks in Distributed Heterogeneous Computing Systems: A Meta-Heuristic Particle Swarm Optimization Approach

  • Popis výsledku anglicky

    Scheduling is a key problem in distributed heterogeneous computing systems in order to benefit from the large computing capacity of such systems and is an NP-complete problem. In this paper, we present a Particle Swarm Optimization (PSO) approach for this problem. PSO is a population-based search algorithm based on the simulation of the social behavior of bird flocking and fish schooling. Particles fly in problem search space to find optimal or near-optimal solutions. The scheduler aims at minimizing make-span, which is the time when finishes the latest task. Experimental studies show that the proposed method is more efficient and surpasses those of reported PSO and GA approaches for this problem.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA102%2F09%2F1494" target="_blank" >GA102/09/1494: Nové metody přenosu dat založené na turbo kódech</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2009

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Ninth International Conference on Hybrid Intelligent Systems, 2009. HIS 09

  • ISBN

    978-0-7695-3745-0

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

  • Název nakladatele

    IEEE Computer Society

  • Místo vydání

    Los Alamitos, California

  • Místo konání akce

    Čína

  • Datum konání akce

    12. 8. 2009

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000281999600082