INTERLEAVER OPTIMIZATION USING POPULATION-BASED METAHEURISTICS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F10%3A86075408" target="_blank" >RIV/61989100:27240/10:86075408 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985807:_____/10:00350889
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
INTERLEAVER OPTIMIZATION USING POPULATION-BASED METAHEURISTICS
Popis výsledku v původním jazyce
Since their appearance in 1993, first approaching the Shannon limit, turbo codes have given a new direction in the channel encoding field, especially since they have been adopted for multiple norms of telecommunications such as deeper communication. A robust interleaver can significantly contribute to the overall performance a turbo code system. Search for a good interleaver is a complex combinatorial optimization problem. In this paper, we present genetic algorithms and differential evolution, two bio-inspired approaches that have proven the ability to solve non-trivial combinatorial optimization tasks, as promising optimization methods to find a well-performing interleaver for large frame sizes.
Název v anglickém jazyce
INTERLEAVER OPTIMIZATION USING POPULATION-BASED METAHEURISTICS
Popis výsledku anglicky
Since their appearance in 1993, first approaching the Shannon limit, turbo codes have given a new direction in the channel encoding field, especially since they have been adopted for multiple norms of telecommunications such as deeper communication. A robust interleaver can significantly contribute to the overall performance a turbo code system. Search for a good interleaver is a complex combinatorial optimization problem. In this paper, we present genetic algorithms and differential evolution, two bio-inspired approaches that have proven the ability to solve non-trivial combinatorial optimization tasks, as promising optimization methods to find a well-performing interleaver for large frame sizes.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
NEURAL NETWORK WORLD
ISSN
1210-0552
e-ISSN
—
Svazek periodika
2010
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
19
Strana od-do
—
Kód UT WoS článku
000284915500002
EID výsledku v databázi Scopus
—