Graph centers used for stabilization of matrix factorizations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F10%3A86075981" target="_blank" >RIV/61989100:27240/10:86075981 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Graph centers used for stabilization of matrix factorizations
Popis výsledku v původním jazyce
Systems of consistent linear equations with symmetric positive semidefinite matrices arise naturally while solving many scientific and engineering problems. In case of a "floating" static structure, the boundary conditions are not sufficient to prevent its rigid body motions. Traditional solvers based on Cholesky decomposition can be adapted to these systems by recognition of zero rows or columns and also by setting up a well conditioned regular submatrix of the problem that is used for implementation of a generalised inverse. Conditioning such a submatrix seems to be related with detection of so called fixing nodes such that the related boundary conditions make the structure as stiff as possible. We can consider the matrix of the problem as an unweighted non-oriented graph. Now we search for nodes that stabilize the solution well-fixing nodes (such nodes are sufficiently far away from each other and are not placed near any straight line). The set of such nodes corresponds to one type
Název v anglickém jazyce
Graph centers used for stabilization of matrix factorizations
Popis výsledku anglicky
Systems of consistent linear equations with symmetric positive semidefinite matrices arise naturally while solving many scientific and engineering problems. In case of a "floating" static structure, the boundary conditions are not sufficient to prevent its rigid body motions. Traditional solvers based on Cholesky decomposition can be adapted to these systems by recognition of zero rows or columns and also by setting up a well conditioned regular submatrix of the problem that is used for implementation of a generalised inverse. Conditioning such a submatrix seems to be related with detection of so called fixing nodes such that the related boundary conditions make the structure as stiff as possible. We can consider the matrix of the problem as an unweighted non-oriented graph. Now we search for nodes that stabilize the solution well-fixing nodes (such nodes are sufficiently far away from each other and are not placed near any straight line). The set of such nodes corresponds to one type
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discussiones Mathematicae Graph Theory
ISSN
1234-3099
e-ISSN
—
Svazek periodika
30
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—