Numerically and parallel scalable TFETI based algorithms for contact problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F10%3A86092848" target="_blank" >RIV/61989100:27240/10:86092848 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27230/10:86092848 RIV/61989100:27740/10:86092848
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Numerically and parallel scalable TFETI based algorithms for contact problems
Popis výsledku v původním jazyce
In Reference [8], a total FETI (TFETI) based domain decomposition algorithm with preconditioning by a natural coarse grid defined by the rigid body motions of the subdomains is adapted to the solution of multibody contact problems with friction in three dimensions and proved to be scalable for Tresca friction. The analysis admits "floating" bodies. The algorithm finds an approximate solution at a cost asymptotically proportional to the number of variables provided the ratio of the decomposition and the discretization parameters is bounded. The analysis is based on the classical results by Farhat, Mandel, and Roux [11] on the scalability of the FETI algorithm for linear problems and on our development of optimal quadratic programming algorithms. The algorithm preserves the parallel scalability of the classical FETI method. Both theoretical results and numerical experiments indicate that our algorithm is effective. The effectiveness of the method in the inner loop of the fixed point iterations for the solution of the contact problems with Coulomb's friction is illustrated with the analysis of a mine support.
Název v anglickém jazyce
Numerically and parallel scalable TFETI based algorithms for contact problems
Popis výsledku anglicky
In Reference [8], a total FETI (TFETI) based domain decomposition algorithm with preconditioning by a natural coarse grid defined by the rigid body motions of the subdomains is adapted to the solution of multibody contact problems with friction in three dimensions and proved to be scalable for Tresca friction. The analysis admits "floating" bodies. The algorithm finds an approximate solution at a cost asymptotically proportional to the number of variables provided the ratio of the decomposition and the discretization parameters is bounded. The analysis is based on the classical results by Farhat, Mandel, and Roux [11] on the scalability of the FETI algorithm for linear problems and on our development of optimal quadratic programming algorithms. The algorithm preserves the parallel scalability of the classical FETI method. Both theoretical results and numerical experiments indicate that our algorithm is effective. The effectiveness of the method in the inner loop of the fixed point iterations for the solution of the contact problems with Coulomb's friction is illustrated with the analysis of a mine support.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 7th International Conference on Engineering Computational Technology
ISBN
978-1-905088-39-3
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
74-83
Název nakladatele
Civil-Comp Press
Místo vydání
Kippen, Stirlingshire
Místo konání akce
Valencie
Datum konání akce
14. 9. 2010
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—