Non Destructive Defect Detection by Spectral Density Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F11%3A86080836" target="_blank" >RIV/61989100:27240/11:86080836 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27360/11:86080836
Výsledek na webu
<a href="http://dx.doi.org/10.3390/s110302334" target="_blank" >http://dx.doi.org/10.3390/s110302334</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s110302334" target="_blank" >10.3390/s110302334</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Non Destructive Defect Detection by Spectral Density Analysis
Popis výsledku v původním jazyce
The potential nondestructive diagnostics of solid objects is discussed in this article. The whole process is accomplished by consecutive steps involving software analysis of the vibration power spectrum (eventually acoustic emissions) created during thenormal operation of the diagnosed device or under unexpected situations. Another option is to create an artificial pulse, which can help us to determine the actual state of the diagnosed device. The main idea of this method is based on the analysis of the current power spectrum density of the received signal and its postprocessing in the Matlab environment with a following sample comparison in the Statistica software environment. The last step, which is comparison of samples, is the most important, because it is possible to determine the status of the examined object at a given time. Nowadays samples are compared only visually, but this method can't produce good results. Further the presented filter can choose relevant data from a huge
Název v anglickém jazyce
Non Destructive Defect Detection by Spectral Density Analysis
Popis výsledku anglicky
The potential nondestructive diagnostics of solid objects is discussed in this article. The whole process is accomplished by consecutive steps involving software analysis of the vibration power spectrum (eventually acoustic emissions) created during thenormal operation of the diagnosed device or under unexpected situations. Another option is to create an artificial pulse, which can help us to determine the actual state of the diagnosed device. The main idea of this method is based on the analysis of the current power spectrum density of the received signal and its postprocessing in the Matlab environment with a following sample comparison in the Statistica software environment. The last step, which is comparison of samples, is the most important, because it is possible to determine the status of the examined object at a given time. Nowadays samples are compared only visually, but this method can't produce good results. Further the presented filter can choose relevant data from a huge
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CG - Elektrochemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sensors
ISSN
1424-8220
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
13
Strana od-do
2334-2346
Kód UT WoS článku
000288786900004
EID výsledku v databázi Scopus
—