Using Structural Information and Citation Evidence to Detect Significant Plagiarism Cases in Scientific Publications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86084522" target="_blank" >RIV/61989100:27240/12:86084522 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1002/asi.21651" target="_blank" >http://dx.doi.org/10.1002/asi.21651</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/asi.21651" target="_blank" >10.1002/asi.21651</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using Structural Information and Citation Evidence to Detect Significant Plagiarism Cases in Scientific Publications
Popis výsledku v původním jazyce
In plagiarism detection (PD) systems, two important problems should be considered: the problem of retrieving candidate documents that are globally similar to a document q under investigation, and the problem of side-by-side comparison of q and its candidates to pinpoint plagiarized fragments in detail. In this article, the authors investigate the usage of structural information of scientific publications in both problems, and the consideration of citation evidence in the second problem. Three statistical measures namely Inverse Generic Class Frequency, Spread, and Depth are introduced to assign a degree of importance (i.e., weight) to structural components in scientific articles. A term-weighting scheme is adjusted to incorporate component-weight factors, which is used to improve the retrieval of potential sources of plagiarism. A plagiarism screening process is applied based on a measure of resemblance, in which component-weight factors are exploited to ignore less or nonsignificant p
Název v anglickém jazyce
Using Structural Information and Citation Evidence to Detect Significant Plagiarism Cases in Scientific Publications
Popis výsledku anglicky
In plagiarism detection (PD) systems, two important problems should be considered: the problem of retrieving candidate documents that are globally similar to a document q under investigation, and the problem of side-by-side comparison of q and its candidates to pinpoint plagiarized fragments in detail. In this article, the authors investigate the usage of structural information of scientific publications in both problems, and the consideration of citation evidence in the second problem. Three statistical measures namely Inverse Generic Class Frequency, Spread, and Depth are introduced to assign a degree of importance (i.e., weight) to structural components in scientific articles. A term-weighting scheme is adjusted to incorporate component-weight factors, which is used to improve the retrieval of potential sources of plagiarism. A plagiarism screening process is applied based on a measure of resemblance, in which component-weight factors are exploited to ignore less or nonsignificant p
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of the American Society for Information Science and Technology
ISSN
1532-2882
e-ISSN
—
Svazek periodika
63
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
27
Strana od-do
286-312
Kód UT WoS článku
000302157900007
EID výsledku v databázi Scopus
—