Dynamic time warping in analysis of student behavioral patterns
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86084590" target="_blank" >RIV/61989100:27240/12:86084590 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/12:86084590
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dynamic time warping in analysis of student behavioral patterns
Popis výsledku v původním jazyce
E-learning systems store large amount of data based on the history of users' interactions with the system. These pieces of information are usually used for further course optimization, finding e-tutors in collaboration learning, analysis of students' behavior, or for other purposes. The paper deals with an analysis of students' behavior in learning management system. The main goal of the paper is to find, how selected methods can influence finding of behavioral patterns in learning management system and how we can reduce the amount of extracted sequences. The methods of process mining and sequential pattern mining were used for extraction of behavioral patterns. The authors present the comparison of selected methods for the definition of students' behavior with the focus to influence of dynamic time warping. Obtained patterns and relations between them are presented using complex networks; the visualization and pattern clusters extraction is optimized by spectral graph partitioning.
Název v anglickém jazyce
Dynamic time warping in analysis of student behavioral patterns
Popis výsledku anglicky
E-learning systems store large amount of data based on the history of users' interactions with the system. These pieces of information are usually used for further course optimization, finding e-tutors in collaboration learning, analysis of students' behavior, or for other purposes. The paper deals with an analysis of students' behavior in learning management system. The main goal of the paper is to find, how selected methods can influence finding of behavioral patterns in learning management system and how we can reduce the amount of extracted sequences. The methods of process mining and sequential pattern mining were used for extraction of behavioral patterns. The authors present the comparison of selected methods for the definition of students' behavior with the focus to influence of dynamic time warping. Obtained patterns and relations between them are presented using complex networks; the visualization and pattern clusters extraction is optimized by spectral graph partitioning.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
DATESO 2012 : databases, texts, specifications, and objects : proceedings of the Dateso 2012 Workshop : April 18-20, 2012, Zernov, Rovensko pod Troskami
ISBN
978-80-7378-171-2
ISSN
—
e-ISSN
—
Počet stran výsledku
11
Strana od-do
49-59
Název nakladatele
MATFYZPRESS
Místo vydání
Praha
Místo konání akce
Žernov, Semily
Datum konání akce
18. 4. 2012
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—