Breast cancer detection and classification using support vector machines and pulse coupled neural network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86089246" target="_blank" >RIV/61989100:27240/12:86089246 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-642-31603-6_23" target="_blank" >http://dx.doi.org/10.1007/978-3-642-31603-6_23</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-31603-6_23" target="_blank" >10.1007/978-3-642-31603-6_23</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Breast cancer detection and classification using support vector machines and pulse coupled neural network
Popis výsledku v původním jazyce
This article introduces a hybrid scheme that combines the advantages of pulse coupled neural networks (PCNNs) and support vector machine, in conjunction with type-II fuzzy sets and wavelet to enhance the contrast of the original images and feature extraction. An application of MRI breast cancer imaging has been chosen and hybridization scheme have been applied to see their ability and accuracy to classify the breast cancer images into two outcomes: cancer or non-cancer. In order to enhance the contrastof the input image, identify the region of interest and detect the boundary of the breast pattern, a type-II fuzzy-based enhancement and PCNN-based segmentation were applied. Finally, wavelet-based features are extracted and normalized and a support vector machine classifier were employed to evaluate the ability of the lesion descriptors for discrimination of different regions of interest to determine whether they represent cancer or not. To evaluate the performance of presented approach
Název v anglickém jazyce
Breast cancer detection and classification using support vector machines and pulse coupled neural network
Popis výsledku anglicky
This article introduces a hybrid scheme that combines the advantages of pulse coupled neural networks (PCNNs) and support vector machine, in conjunction with type-II fuzzy sets and wavelet to enhance the contrast of the original images and feature extraction. An application of MRI breast cancer imaging has been chosen and hybridization scheme have been applied to see their ability and accuracy to classify the breast cancer images into two outcomes: cancer or non-cancer. In order to enhance the contrastof the input image, identify the region of interest and detect the boundary of the breast pattern, a type-II fuzzy-based enhancement and PCNN-based segmentation were applied. Finally, wavelet-based features are extracted and normalized and a support vector machine classifier were employed to evaluate the ability of the lesion descriptors for discrimination of different regions of interest to determine whether they represent cancer or not. To evaluate the performance of presented approach
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Intelligent Systems and Computing. Volume 179
ISBN
978-3-642-31602-9
ISSN
2194-5357
e-ISSN
—
Počet stran výsledku
11
Strana od-do
269-279
Název nakladatele
Springer
Místo vydání
Heidelberg
Místo konání akce
Praha
Datum konání akce
29. 8. 2011
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—