Improvement of neural network classifier using floating centroids
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86092949" target="_blank" >RIV/61989100:27240/12:86092949 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10115-011-0410-8" target="_blank" >http://dx.doi.org/10.1007/s10115-011-0410-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10115-011-0410-8" target="_blank" >10.1007/s10115-011-0410-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improvement of neural network classifier using floating centroids
Popis výsledku v původním jazyce
This paper presents a novel technique-Floating Centroids Method (FCM) designed to improve the performance of a conventional neural network classifier. Partition space is a space that is used to categorize data sample after sample is mapped by neural network. In the partition space, the centroid is a point, which denotes the center of a class. In a conventional neural network classifier, position of centroids and the relationship between centroids and classes are set manually. In addition, number of centroids is fixed with reference to the number of classes. The proposed approach introduces many floating centroids, which are spread throughout the partition space and obtained by using K-Means algorithm. Moreover, different classes labels are attached tothese centroids automatically. A sample is predicted as a certain class if the closest centroid of its corresponding mapped point is labeled by this class. Experimental results illustrate that the proposed method has favorable performance
Název v anglickém jazyce
Improvement of neural network classifier using floating centroids
Popis výsledku anglicky
This paper presents a novel technique-Floating Centroids Method (FCM) designed to improve the performance of a conventional neural network classifier. Partition space is a space that is used to categorize data sample after sample is mapped by neural network. In the partition space, the centroid is a point, which denotes the center of a class. In a conventional neural network classifier, position of centroids and the relationship between centroids and classes are set manually. In addition, number of centroids is fixed with reference to the number of classes. The proposed approach introduces many floating centroids, which are spread throughout the partition space and obtained by using K-Means algorithm. Moreover, different classes labels are attached tothese centroids automatically. A sample is predicted as a certain class if the closest centroid of its corresponding mapped point is labeled by this class. Experimental results illustrate that the proposed method has favorable performance
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F09%2F0990" target="_blank" >GA201/09/0990: Zpracování XML dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Knowledge and Information Systems
ISSN
0219-1377
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
22
Strana od-do
433-454
Kód UT WoS článku
000304116100002
EID výsledku v databázi Scopus
—