Searching for Dependences within the System of Measuring Stations by Using Symbolic Regression
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F13%3A86088506" target="_blank" >RIV/61989100:27240/13:86088506 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/13:86088506
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-00542-3_51" target="_blank" >http://dx.doi.org/10.1007/978-3-319-00542-3_51</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-00542-3_51" target="_blank" >10.1007/978-3-319-00542-3_51</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Searching for Dependences within the System of Measuring Stations by Using Symbolic Regression
Popis výsledku v původním jazyce
This article deals with searching for dependences within the System of Measuring Stations.Weather measuring stations represent one of the most important data sources. The same could be said about stations that measure the composition of air and the levelof pollutants. Knowledge of the current state of air quality resulting from the measured values is essential for citizens, especially in areas affected by heavy industry or dense traffic. Computation of such air quality indicators depends on values obtained from measuring stations which are more or less reliable. They can have failures or they can measure just a part of the required values. In general, searching for dependences represents a complex and non-linear problem that can be effectively solvedby some class of evolutionary algorithms. This article describes a method that helps us to predict the levels of air quality in the case of station failure or data loss. The model is constructed by the symbolic regression with usage of th
Název v anglickém jazyce
Searching for Dependences within the System of Measuring Stations by Using Symbolic Regression
Popis výsledku anglicky
This article deals with searching for dependences within the System of Measuring Stations.Weather measuring stations represent one of the most important data sources. The same could be said about stations that measure the composition of air and the levelof pollutants. Knowledge of the current state of air quality resulting from the measured values is essential for citizens, especially in areas affected by heavy industry or dense traffic. Computation of such air quality indicators depends on values obtained from measuring stations which are more or less reliable. They can have failures or they can measure just a part of the required values. In general, searching for dependences represents a complex and non-linear problem that can be effectively solvedby some class of evolutionary algorithms. This article describes a method that helps us to predict the levels of air quality in the case of station failure or data loss. The model is constructed by the symbolic regression with usage of th
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Intelligent Systems and Computing. Volume 210
ISSN
2194-5357
e-ISSN
—
Svazek periodika
210
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
12
Strana od-do
517-528
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—