A modification of diffusion distance for clustering and image segmentation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F13%3A86088905" target="_blank" >RIV/61989100:27240/13:86088905 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/chapter/10.1007%2F978-3-319-02895-8_43#page-1" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-319-02895-8_43#page-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-02895-8_43" target="_blank" >10.1007/978-3-319-02895-8_43</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A modification of diffusion distance for clustering and image segmentation
Popis výsledku v původním jazyce
Measuring the distances is an important problem in many image-segmentation algorithms. The distance should tell whether two image points belong to a single or, respectively, to two different image segments. The simplest approach is to use the Euclidean distance. However, measuring the distances along the image manifold seems to take better into account the facts that are important for segmentation. Geodesic distance, i.e. the shortest path in the corresponding graph or k shortest paths can be regarded as the simplest way how the distances along the manifold can be measured. At a first glance, one would say that the resistance and diffusion distance should provide the properties that are even better since all the paths along the manifold are taken intoaccount. Surprisingly, it is not often true. We show that the high number of paths is not beneficial for measuring the distances in image segmentation. On the basis of analysing the problems of diffusion distance, we introduce its modific
Název v anglickém jazyce
A modification of diffusion distance for clustering and image segmentation
Popis výsledku anglicky
Measuring the distances is an important problem in many image-segmentation algorithms. The distance should tell whether two image points belong to a single or, respectively, to two different image segments. The simplest approach is to use the Euclidean distance. However, measuring the distances along the image manifold seems to take better into account the facts that are important for segmentation. Geodesic distance, i.e. the shortest path in the corresponding graph or k shortest paths can be regarded as the simplest way how the distances along the manifold can be measured. At a first glance, one would say that the resistance and diffusion distance should provide the properties that are even better since all the paths along the manifold are taken intoaccount. Surprisingly, it is not often true. We show that the high number of paths is not beneficial for measuring the distances in image segmentation. On the basis of analysing the problems of diffusion distance, we introduce its modific
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science. Volume 8192
ISBN
978-3-319-02894-1
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
12
Strana od-do
480-491
Název nakladatele
Springer Heidelberg
Místo vydání
Berlín
Místo konání akce
Poznan
Datum konání akce
28. 10. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—