A hybrid metaheuristic algorithm for job scheduling on computational grids
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F13%3A86092928" target="_blank" >RIV/61989100:27240/13:86092928 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A hybrid metaheuristic algorithm for job scheduling on computational grids
Popis výsledku v původním jazyce
The dynamic nature of grid resources and the demands of users produce complexity in the grid scheduling problem that cannot be addressed by deterministic algorithms with polynomial complexity. One of the best methods for grid scheduling is the genetic algorithm (GA); the simple and parallel features of this algorithm make it applicable to several optimization problems. A GA searches the problem space globally and is unable to search locally. Therefore, scholars have investigated combining GAs with othermeta-heuristic methods to resolve the local search problem. This is the focus of the present contribution, where we have developed a new hybrid scheduling algorithm GCA that combines GA and the gravitational emulation local search (GELS) algorithm. Thenoteworthy feature of the proposed optimal scheduler is that it decreases runtime and the number of submitted tasks whose deadlines are missed. A comparison of the performance of our proposed joint optimal scheduler to similar methods sho
Název v anglickém jazyce
A hybrid metaheuristic algorithm for job scheduling on computational grids
Popis výsledku anglicky
The dynamic nature of grid resources and the demands of users produce complexity in the grid scheduling problem that cannot be addressed by deterministic algorithms with polynomial complexity. One of the best methods for grid scheduling is the genetic algorithm (GA); the simple and parallel features of this algorithm make it applicable to several optimization problems. A GA searches the problem space globally and is unable to search locally. Therefore, scholars have investigated combining GAs with othermeta-heuristic methods to resolve the local search problem. This is the focus of the present contribution, where we have developed a new hybrid scheduling algorithm GCA that combines GA and the gravitational emulation local search (GELS) algorithm. Thenoteworthy feature of the proposed optimal scheduler is that it decreases runtime and the number of submitted tasks whose deadlines are missed. A comparison of the performance of our proposed joint optimal scheduler to similar methods sho
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Informatica
ISSN
0350-5596
e-ISSN
—
Svazek periodika
37
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
SI - Slovinská republika
Počet stran výsledku
8
Strana od-do
157-164
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—