Modeling forecast uncertainty using fuzzy clustering
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F13%3A86096970" target="_blank" >RIV/61989100:27240/13:86096970 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-642-32922-7_30" target="_blank" >http://dx.doi.org/10.1007/978-3-642-32922-7_30</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-32922-7_30" target="_blank" >10.1007/978-3-642-32922-7_30</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modeling forecast uncertainty using fuzzy clustering
Popis výsledku v původním jazyce
Numerical Weather Prediction (NWP) systems are state-of-the-art atmospheric models that can provide forecasts of various weather attributes. These forecasts are used in many applications as critical inputs for planning and decision making. However, NWP systems cannot supply any information about the uncertainty of the forecasts as their immediate outputs. In this paper, we investigate the application of Fuzzy C-means clustering as a powerful soft computing technique to discover classes of weather situations that follow similar forecast uncertainty patterns. These patterns are then utilized by distribution fitting methods to obtain Prediction Intervals (PIs) that can express the expected accuracy of the NWP system outputs. Three years of weather forecast records were used in a set of experiments to empirically evaluate the applicability of the proposed approach and the accuracy of the computed PIs. Results confirm that the PIs generated by the proposed post-processing procedure have a h
Název v anglickém jazyce
Modeling forecast uncertainty using fuzzy clustering
Popis výsledku anglicky
Numerical Weather Prediction (NWP) systems are state-of-the-art atmospheric models that can provide forecasts of various weather attributes. These forecasts are used in many applications as critical inputs for planning and decision making. However, NWP systems cannot supply any information about the uncertainty of the forecasts as their immediate outputs. In this paper, we investigate the application of Fuzzy C-means clustering as a powerful soft computing technique to discover classes of weather situations that follow similar forecast uncertainty patterns. These patterns are then utilized by distribution fitting methods to obtain Prediction Intervals (PIs) that can express the expected accuracy of the NWP system outputs. Three years of weather forecast records were used in a set of experiments to empirically evaluate the applicability of the proposed approach and the accuracy of the computed PIs. Results confirm that the PIs generated by the proposed post-processing procedure have a h
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Intelligent Systems and Computing
ISBN
978-3-642-32921-0
ISSN
2194-5357
e-ISSN
—
Počet stran výsledku
10
Strana od-do
287-296
Název nakladatele
Springer
Místo vydání
Heidelberg
Místo konání akce
Ostrava
Datum konání akce
5. 9. 2012
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—