Classification Methods Accuracy for Speech Emotion Recognition System
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86090869" target="_blank" >RIV/61989100:27240/14:86090869 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-07401-6_44" target="_blank" >http://dx.doi.org/10.1007/978-3-319-07401-6_44</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-07401-6_44" target="_blank" >10.1007/978-3-319-07401-6_44</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Classification Methods Accuracy for Speech Emotion Recognition System
Popis výsledku v původním jazyce
Emotional state classification of human speech and recognition accuracy of the classifiers is disclosed in this paper. Recent developments in speech recognition places more emphasis on the extraction of information about the speech source. This means obtain information about who and how it was said. This article describes research which seeks to recognize the information from speaking, emotional state in particular. Emotional state is recognized by using different classifiers and features of speech by nowadays known systems. Berlin database of emotional recordings was used to train and test the system. Mel-frequency spectral coefficients and dynamic coefficients were extracted from the audio signal of the database. For classification were used Gaussian Mixture Model, k-Nearest Neighbours and Artificial Neural Networks methods. The main effort of this research is to examine the accuracy and usability of classifying methods for detection of human stress status from his speech.
Název v anglickém jazyce
Classification Methods Accuracy for Speech Emotion Recognition System
Popis výsledku anglicky
Emotional state classification of human speech and recognition accuracy of the classifiers is disclosed in this paper. Recent developments in speech recognition places more emphasis on the extraction of information about the speech source. This means obtain information about who and how it was said. This article describes research which seeks to recognize the information from speaking, emotional state in particular. Emotional state is recognized by using different classifiers and features of speech by nowadays known systems. Berlin database of emotional recordings was used to train and test the system. Mel-frequency spectral coefficients and dynamic coefficients were extracted from the audio signal of the database. For classification were used Gaussian Mixture Model, k-Nearest Neighbours and Artificial Neural Networks methods. The main effort of this research is to examine the accuracy and usability of classifying methods for detection of human stress status from his speech.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Nostradamus 2014: prediction, modeling and analysis of complex systems
ISBN
978-3-319-07400-9
ISSN
2194-5357
e-ISSN
—
Počet stran výsledku
9
Strana od-do
439-447
Název nakladatele
Springer
Místo vydání
Heidelberg
Místo konání akce
Ostrava
Datum konání akce
23. 6. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—