Articular cartilage defect detection based on image segmentation with colour mapping
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86092914" target="_blank" >RIV/61989100:27240/14:86092914 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/14:86092914
Výsledek na webu
<a href="http://link.springer.com/chapter/10.1007%2F978-3-319-11289-3_22" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-319-11289-3_22</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Articular cartilage defect detection based on image segmentation with colour mapping
Popis výsledku v původním jazyce
This article addresses a possible approach for a higher quality diagnosis and detection of the pathological defects of articular cartilage. The defects of articular cartilage are one of the most common pathologies of articular cartilage that a physicianencounters. In clinical practice, doctors can only estimate visually whether or not there is a pathological defect with the use of magnetic resonance images. Our proposed methodology is able to accurately and precisely localize ruptures of cartilaginoustissue and thus greatly contribute to improving a final diagnosis. When analysing MRI data, we work only with grey-levels, which is rather complicated for producing a quality diagnosis. Our proposed algorithm, based on fuzzy logic, brings together various shades of grey. Each set is assigned a colour that corresponds to the density of the tissue. With this procedure, it is possible to create a contrast map of individual tissue structures and very clearly identify where cartilaginous tiss
Název v anglickém jazyce
Articular cartilage defect detection based on image segmentation with colour mapping
Popis výsledku anglicky
This article addresses a possible approach for a higher quality diagnosis and detection of the pathological defects of articular cartilage. The defects of articular cartilage are one of the most common pathologies of articular cartilage that a physicianencounters. In clinical practice, doctors can only estimate visually whether or not there is a pathological defect with the use of magnetic resonance images. Our proposed methodology is able to accurately and precisely localize ruptures of cartilaginoustissue and thus greatly contribute to improving a final diagnosis. When analysing MRI data, we work only with grey-levels, which is rather complicated for producing a quality diagnosis. Our proposed algorithm, based on fuzzy logic, brings together various shades of grey. Each set is assigned a colour that corresponds to the density of the tissue. With this procedure, it is possible to create a contrast map of individual tissue structures and very clearly identify where cartilaginous tiss
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 6678 LNAI, Issue PART 1
ISSN
0302-9743
e-ISSN
—
Svazek periodika
2014
Číslo periodika v rámci svazku
8733
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
9
Strana od-do
214-222
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—