Optimising traffic lights with metaheuristics: Reduction of car emissions and consumption
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86093031" target="_blank" >RIV/61989100:27240/14:86093031 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/IJCNN.2014.6889749" target="_blank" >http://dx.doi.org/10.1109/IJCNN.2014.6889749</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IJCNN.2014.6889749" target="_blank" >10.1109/IJCNN.2014.6889749</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimising traffic lights with metaheuristics: Reduction of car emissions and consumption
Popis výsledku v původním jazyce
In last years, enhancing the vehicular traffic flow becomes a mandatory task to minimize the impact of polluting emissions and unsustainable fuel consumption in our cities. Smart Mobility optimisation emerges then, with the goal of improving the traffic management in the city. With this aim, we propose in this paper an optimisation strategy based on swarm intelligence to find efficient cycle programs for traffic lights deployed in large urban areas. In concrete, in this work we focus on the improvement of the traffic flow with the global purpose of reducing contaminant emissions (CO2 and NOx) and fuel consumption in the analyzed areas. For the sake of standardization, we follow European Union reference framework for traffic emissions, called HandBook Emission FActors (HBEFA). As a case study, we have concentrated in two extensive urban areas in the cities of Malaga and Seville (in Spain). After several comparisons between different optimisation techniques (Differential Evolution and Random Search), as well as other solutions provided by experts, our proposal is shown to obtain significant reductions of fuel consumption and gas emissions. 2014 IEEE.
Název v anglickém jazyce
Optimising traffic lights with metaheuristics: Reduction of car emissions and consumption
Popis výsledku anglicky
In last years, enhancing the vehicular traffic flow becomes a mandatory task to minimize the impact of polluting emissions and unsustainable fuel consumption in our cities. Smart Mobility optimisation emerges then, with the goal of improving the traffic management in the city. With this aim, we propose in this paper an optimisation strategy based on swarm intelligence to find efficient cycle programs for traffic lights deployed in large urban areas. In concrete, in this work we focus on the improvement of the traffic flow with the global purpose of reducing contaminant emissions (CO2 and NOx) and fuel consumption in the analyzed areas. For the sake of standardization, we follow European Union reference framework for traffic emissions, called HandBook Emission FActors (HBEFA). As a case study, we have concentrated in two extensive urban areas in the cities of Malaga and Seville (in Spain). After several comparisons between different optimisation techniques (Differential Evolution and Random Search), as well as other solutions provided by experts, our proposal is shown to obtain significant reductions of fuel consumption and gas emissions. 2014 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the International Joint Conference on Neural Networks
ISBN
978-1-4799-1484-5
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
48-54
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
New York
Místo konání akce
Beijing
Datum konání akce
6. 7. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000371465700008