Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Optimising traffic lights with metaheuristics: Reduction of car emissions and consumption

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86093031" target="_blank" >RIV/61989100:27240/14:86093031 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1109/IJCNN.2014.6889749" target="_blank" >http://dx.doi.org/10.1109/IJCNN.2014.6889749</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IJCNN.2014.6889749" target="_blank" >10.1109/IJCNN.2014.6889749</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Optimising traffic lights with metaheuristics: Reduction of car emissions and consumption

  • Popis výsledku v původním jazyce

    In last years, enhancing the vehicular traffic flow becomes a mandatory task to minimize the impact of polluting emissions and unsustainable fuel consumption in our cities. Smart Mobility optimisation emerges then, with the goal of improving the traffic management in the city. With this aim, we propose in this paper an optimisation strategy based on swarm intelligence to find efficient cycle programs for traffic lights deployed in large urban areas. In concrete, in this work we focus on the improvement of the traffic flow with the global purpose of reducing contaminant emissions (CO2 and NOx) and fuel consumption in the analyzed areas. For the sake of standardization, we follow European Union reference framework for traffic emissions, called HandBook Emission FActors (HBEFA). As a case study, we have concentrated in two extensive urban areas in the cities of Malaga and Seville (in Spain). After several comparisons between different optimisation techniques (Differential Evolution and Random Search), as well as other solutions provided by experts, our proposal is shown to obtain significant reductions of fuel consumption and gas emissions. 2014 IEEE.

  • Název v anglickém jazyce

    Optimising traffic lights with metaheuristics: Reduction of car emissions and consumption

  • Popis výsledku anglicky

    In last years, enhancing the vehicular traffic flow becomes a mandatory task to minimize the impact of polluting emissions and unsustainable fuel consumption in our cities. Smart Mobility optimisation emerges then, with the goal of improving the traffic management in the city. With this aim, we propose in this paper an optimisation strategy based on swarm intelligence to find efficient cycle programs for traffic lights deployed in large urban areas. In concrete, in this work we focus on the improvement of the traffic flow with the global purpose of reducing contaminant emissions (CO2 and NOx) and fuel consumption in the analyzed areas. For the sake of standardization, we follow European Union reference framework for traffic emissions, called HandBook Emission FActors (HBEFA). As a case study, we have concentrated in two extensive urban areas in the cities of Malaga and Seville (in Spain). After several comparisons between different optimisation techniques (Differential Evolution and Random Search), as well as other solutions provided by experts, our proposal is shown to obtain significant reductions of fuel consumption and gas emissions. 2014 IEEE.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the International Joint Conference on Neural Networks

  • ISBN

    978-1-4799-1484-5

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

    48-54

  • Název nakladatele

    Institute of Electrical and Electronics Engineers

  • Místo vydání

    New York

  • Místo konání akce

    Beijing

  • Datum konání akce

    6. 7. 2014

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000371465700008