Towards an Automated Zebrafish-based Toxicity Test Model Using Machine Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86096565" target="_blank" >RIV/61989100:27240/15:86096565 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.procs.2015.09.008" target="_blank" >http://dx.doi.org/10.1016/j.procs.2015.09.008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.procs.2015.09.008" target="_blank" >10.1016/j.procs.2015.09.008</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards an Automated Zebrafish-based Toxicity Test Model Using Machine Learning
Popis výsledku v původním jazyce
Zebrafish animal is considered as one of the most suitable animals to test toxicity of compounds due many features such as transparency and a large number of embryos produced in each mating. The main problem of the zebrafish-based toxicity test is the manual inspection of thousands of animals images in different phases and this is not feasible enough for the analysis, i.e. it is slow and may be inaccurate process. To help addressing this problem, in this paper, an automated classification of alive (healthy) and coagulant (died because of toxic compounds) zebrafish embryos are proposed. The embryos' images are used to extract some features using the Segmentation-based Fractal Texture Analysis (SFTA) technique. The Rotation Forest classifier is then usedto match between testing and training features (i.e. to classify alive and coagulant embryos). The experiments have proved that choosing threshold value of SFTA technique and the size of the rotation forest classifier have a great impact
Název v anglickém jazyce
Towards an Automated Zebrafish-based Toxicity Test Model Using Machine Learning
Popis výsledku anglicky
Zebrafish animal is considered as one of the most suitable animals to test toxicity of compounds due many features such as transparency and a large number of embryos produced in each mating. The main problem of the zebrafish-based toxicity test is the manual inspection of thousands of animals images in different phases and this is not feasible enough for the analysis, i.e. it is slow and may be inaccurate process. To help addressing this problem, in this paper, an automated classification of alive (healthy) and coagulant (died because of toxic compounds) zebrafish embryos are proposed. The embryos' images are used to extract some features using the Segmentation-based Fractal Texture Analysis (SFTA) technique. The Rotation Forest classifier is then usedto match between testing and training features (i.e. to classify alive and coagulant embryos). The experiments have proved that choosing threshold value of SFTA technique and the size of the rotation forest classifier have a great impact
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Procedia Computer Science. Volume 65
ISBN
—
ISSN
1877-0509
e-ISSN
—
Počet stran výsledku
9
Strana od-do
643-651
Název nakladatele
Elsevier
Místo vydání
Amsterdam
Místo konání akce
Praha
Datum konání akce
20. 4. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—