Plant identification: Two dimensional-based vs. One dimensional-based feature extraction methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86096577" target="_blank" >RIV/61989100:27240/15:86096577 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-19719-7_33" target="_blank" >http://dx.doi.org/10.1007/978-3-319-19719-7_33</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-19719-7_33" target="_blank" >10.1007/978-3-319-19719-7_33</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Plant identification: Two dimensional-based vs. One dimensional-based feature extraction methods
Popis výsledku v původním jazyce
In this paper, a plant identification approach using 2D digital leaves images is proposed. The approach made use of two methods of features extraction (one-dimensional (1D) and two-dimensional (2D) techniques) and the Bagging classifier. For the 1D-basedmethod, PCA and LDA techniques were applied, while 2D-PCA and 2D-LDA algorithms were used for the 2D-based method. To classify the extracted features in both methods, the Bagging classifier, with the decision tree as a weak learner, was used. The proposed approach, with its four feature extraction techniques, was tested using Flavia dataset which consists of 1907 colored leaves images. The experimental results showed that the accuracy and the performance of our approach, with the 2D-PCA and 2D-LDA, wasmuch better than using the PCA and LDA. Furthermore, it was proven that the 2D-LDA-based method gave the best plant identification accuracy and increasing the weak learners of the Bagging classifier leaded to a better accuracy. Also, a c
Název v anglickém jazyce
Plant identification: Two dimensional-based vs. One dimensional-based feature extraction methods
Popis výsledku anglicky
In this paper, a plant identification approach using 2D digital leaves images is proposed. The approach made use of two methods of features extraction (one-dimensional (1D) and two-dimensional (2D) techniques) and the Bagging classifier. For the 1D-basedmethod, PCA and LDA techniques were applied, while 2D-PCA and 2D-LDA algorithms were used for the 2D-based method. To classify the extracted features in both methods, the Bagging classifier, with the decision tree as a weak learner, was used. The proposed approach, with its four feature extraction techniques, was tested using Flavia dataset which consists of 1907 colored leaves images. The experimental results showed that the accuracy and the performance of our approach, with the 2D-PCA and 2D-LDA, wasmuch better than using the PCA and LDA. Furthermore, it was proven that the 2D-LDA-based method gave the best plant identification accuracy and increasing the weak learners of the Bagging classifier leaded to a better accuracy. Also, a c
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Soft Computing. Volume 368
ISBN
978-3-319-19718-0
ISSN
1615-3871
e-ISSN
—
Počet stran výsledku
11
Strana od-do
375-385
Název nakladatele
Springer Verlag
Místo vydání
London
Místo konání akce
Burgos
Datum konání akce
15. 6. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—