Image reconstruction in electrical impedance tomography using neural network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86096789" target="_blank" >RIV/61989100:27240/15:86096789 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/CIBEC.2014.7020959" target="_blank" >http://dx.doi.org/10.1109/CIBEC.2014.7020959</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CIBEC.2014.7020959" target="_blank" >10.1109/CIBEC.2014.7020959</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Image reconstruction in electrical impedance tomography using neural network
Popis výsledku v původním jazyce
Electrical impedance tomography (EIT) imaging method is gaining its popularity due to ease of use and also non-invasiveness. The inner distribution of resistivity, which corresponds to different resistivity properties of different tissues, is estimated from voltage potentials measured on the boundary of inspected object. The major problem of EIT is how to reconstruct the image of inner resistivity. There are many approaches to solve this issue, which require more computational demands. The use of neuralnetwork to solve this non-linear problem addresses the demand to ease the implementation and lower the computational demands. In this article we adopted the use of Radial Basis Function (RBF) neural network for image reconstruction and compared it to reconstructed images obtained using EIDORS software. RBF network was created and trained using the Matlab and neural network toolbox. As training data the simulated measurement voltages and EIDORS difference reconstruction gained values of
Název v anglickém jazyce
Image reconstruction in electrical impedance tomography using neural network
Popis výsledku anglicky
Electrical impedance tomography (EIT) imaging method is gaining its popularity due to ease of use and also non-invasiveness. The inner distribution of resistivity, which corresponds to different resistivity properties of different tissues, is estimated from voltage potentials measured on the boundary of inspected object. The major problem of EIT is how to reconstruct the image of inner resistivity. There are many approaches to solve this issue, which require more computational demands. The use of neuralnetwork to solve this non-linear problem addresses the demand to ease the implementation and lower the computational demands. In this article we adopted the use of Radial Basis Function (RBF) neural network for image reconstruction and compared it to reconstructed images obtained using EIDORS software. RBF network was created and trained using the Matlab and neural network toolbox. As training data the simulated measurement voltages and EIDORS difference reconstruction gained values of
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JB - Senzory, čidla, měření a regulace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 7th Cairo International Biomedical Engineering Conference, CIBEC 2014
ISBN
978-1-4799-4412-5
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
39-42
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
New York
Místo konání akce
Giza
Datum konání akce
11. 12. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—