High Utility-Itemset Mining and Privacy-Preserving Utility Mining
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86094385" target="_blank" >RIV/61989100:27240/16:86094385 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S2213020915000580" target="_blank" >http://www.sciencedirect.com/science/article/pii/S2213020915000580</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.pisc.2015.11.013" target="_blank" >10.1016/j.pisc.2015.11.013</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
High Utility-Itemset Mining and Privacy-Preserving Utility Mining
Popis výsledku v původním jazyce
In recent decades, high-utility itemset mining (HUIM) has emerging a critical research topic since the quantity and profit factors are both concerned to mine the high-utility itemsets (HUIs). Generally, data mining is commonly used to discover interesting and useful knowledge from massive data. It may, however, lead to privacy threats if private or secure information (e.g., HUIs) are published in the public place or misused. In this paper, we focus on the issues of HUIM and privacy-preserving utility mining (PPUM), and present two evolutionary algorithms to respectively mine HUIs and hide the sensitive high-utility itemsets in PPUM. Extensive experiments showed that the two proposed models for the applications of HUIM and PPUM can not only generate the high quality profitable itemsets according to the user-specified minimum utility threshold, but also enable the capability of privacy preserving for private or secure information (e.g., HUIs) in real-word applications.
Název v anglickém jazyce
High Utility-Itemset Mining and Privacy-Preserving Utility Mining
Popis výsledku anglicky
In recent decades, high-utility itemset mining (HUIM) has emerging a critical research topic since the quantity and profit factors are both concerned to mine the high-utility itemsets (HUIs). Generally, data mining is commonly used to discover interesting and useful knowledge from massive data. It may, however, lead to privacy threats if private or secure information (e.g., HUIs) are published in the public place or misused. In this paper, we focus on the issues of HUIM and privacy-preserving utility mining (PPUM), and present two evolutionary algorithms to respectively mine HUIs and hide the sensitive high-utility itemsets in PPUM. Extensive experiments showed that the two proposed models for the applications of HUIM and PPUM can not only generate the high quality profitable itemsets according to the user-specified minimum utility threshold, but also enable the capability of privacy preserving for private or secure information (e.g., HUIs) in real-word applications.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Perspectives in Science
ISSN
2213-0209
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
7
Strana od-do
74-80
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—