Hidden Markov models for gene sequence classification: Classifying the VSG gene in the Trypanosoma brucei genome
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86096557" target="_blank" >RIV/61989100:27240/16:86096557 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/article/10.1007%2Fs10044-015-0508-9" target="_blank" >http://link.springer.com/article/10.1007%2Fs10044-015-0508-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10044-015-0508-9" target="_blank" >10.1007/s10044-015-0508-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hidden Markov models for gene sequence classification: Classifying the VSG gene in the Trypanosoma brucei genome
Popis výsledku v původním jazyce
The article presents an application of hidden Markov models (HMMs) for pattern recognition on genome sequences. We apply HMM for identifying genes encoding the variant surface glycoprotein (VSG) in the genomes of Trypanosoma brucei (T. brucei) and other African trypanosomes. These are parasitic protozoa causative agents of sleeping sickness and several diseases in domestic and wild animals. These parasites have a peculiar strategy to evade the host's immune system that consists in periodically changing their predominant cellular surface protein (VSG). The motivation for using patterns recognition methods to identify these genes, instead of traditional homology based ones, is that the levels of sequence identity (amino acid and DNA sequence) amongst these genes is often below of what is considered reliable in these methods. Among pattern recognition approaches, HMM are particularly suitable to tackle this problem because they can handle more naturally the determination of gene edges. We evaluate the performance of the model using different number of states in the Markov model, as well as several performance metrics. The model is applied using public genomic data. Our empirical results show that the VSG genes on T. brucei can be safely identified (high sensitivity and low rate of false positives) using HMM. (C) 2015 Springer-Verlag London
Název v anglickém jazyce
Hidden Markov models for gene sequence classification: Classifying the VSG gene in the Trypanosoma brucei genome
Popis výsledku anglicky
The article presents an application of hidden Markov models (HMMs) for pattern recognition on genome sequences. We apply HMM for identifying genes encoding the variant surface glycoprotein (VSG) in the genomes of Trypanosoma brucei (T. brucei) and other African trypanosomes. These are parasitic protozoa causative agents of sleeping sickness and several diseases in domestic and wild animals. These parasites have a peculiar strategy to evade the host's immune system that consists in periodically changing their predominant cellular surface protein (VSG). The motivation for using patterns recognition methods to identify these genes, instead of traditional homology based ones, is that the levels of sequence identity (amino acid and DNA sequence) amongst these genes is often below of what is considered reliable in these methods. Among pattern recognition approaches, HMM are particularly suitable to tackle this problem because they can handle more naturally the determination of gene edges. We evaluate the performance of the model using different number of states in the Markov model, as well as several performance metrics. The model is applied using public genomic data. Our empirical results show that the VSG genes on T. brucei can be safely identified (high sensitivity and low rate of false positives) using HMM. (C) 2015 Springer-Verlag London
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Pattern Analysis and Applications
ISSN
1433-7541
e-ISSN
—
Svazek periodika
19
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
793-805
Kód UT WoS článku
000379266300015
EID výsledku v databázi Scopus
2-s2.0-84938718933