Fuzzy c-means algorithm in automatic classification of EEG
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86098266" target="_blank" >RIV/61989100:27240/16:86098266 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/chapter/10.1007%2F978-3-319-33609-1_13" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-319-33609-1_13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-33609-1_13" target="_blank" >10.1007/978-3-319-33609-1_13</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fuzzy c-means algorithm in automatic classification of EEG
Popis výsledku v původním jazyce
The electroencephalogram (EEG) provides markers of brain disturbances in the field of epilepsy. In short duration EEG data recordings, the epileptic graphoelements may not manifest. The visual analysis of lengthy signals is a tedious task. It is necessary to track the activity on the computer screen and to detect the epileptiform graphoelements and the other pathological activity. The automation of the process is suggested. The procedure is based on processing temporal profiles computed by means of multichannel adaptive segmentation and subsequent classification of detected signal graphoelements. The temporal profiles, function of the class membership in the course of time, reflect the dynamic EEG microstructure and may be used for visual indication of abnormal changes in the EEG using different colors. We will show that Fuzzy c-means (FCM) algorithm can be used for correct classification of epileptic pattern, creating homogeneous compact classes of significant EEG segments. (C) Springer International Publishing Switzerland 2016.
Název v anglickém jazyce
Fuzzy c-means algorithm in automatic classification of EEG
Popis výsledku anglicky
The electroencephalogram (EEG) provides markers of brain disturbances in the field of epilepsy. In short duration EEG data recordings, the epileptic graphoelements may not manifest. The visual analysis of lengthy signals is a tedious task. It is necessary to track the activity on the computer screen and to detect the epileptiform graphoelements and the other pathological activity. The automation of the process is suggested. The procedure is based on processing temporal profiles computed by means of multichannel adaptive segmentation and subsequent classification of detected signal graphoelements. The temporal profiles, function of the class membership in the course of time, reflect the dynamic EEG microstructure and may be used for visual indication of abnormal changes in the EEG using different colors. We will show that Fuzzy c-means (FCM) algorithm can be used for correct classification of epileptic pattern, creating homogeneous compact classes of significant EEG segments. (C) Springer International Publishing Switzerland 2016.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Intelligent Systems and Computing. Volume 450
ISBN
978-3-319-33608-4
ISSN
1615-3871
e-ISSN
—
Počet stran výsledku
10
Strana od-do
147-156
Název nakladatele
Springer
Místo vydání
Basel
Místo konání akce
Soči
Datum konání akce
16. 5. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—